Chinese Science Bulletin

, Volume 49, Issue 17, pp 1806–1811 | Cite as

Development of the CAS-LIBB single-particle microbeam for localized irradiation of living cells

  • Xufei Wang
  • Xiaohua Wang
  • Lianyun Chen
  • Zhiwen Hu
  • Jun Li
  • Yu Wu
  • Bin Chen
  • Suhua Hu
  • Jun Zhang
  • Mingliang Xu
  • Lijun Wu
  • Shaohu Wang
  • Huiyun Feng
  • Furu Zhan
  • Shixiang Peng
  • Chundong Hu
  • Shuqing Zhang
  • Jianjun Cheng
  • Zhongtao Shi
  • Hang Yuan
  • Haitao Yuan
  • Zengliang Yu
Articles

Abstract

A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). The system was designed to deliver a defined numbers of hydrogen ions, produced by a van de Graaff accelerator, in an energy range of 2.0–3.0 MeV, into an area smaller than that of the nucleus of an individual living cell. The beam is collimated by a borosilicate glass capillary that forms the beam-line exit. An integrated computer program recognizes the cells and locates them one by one over the microbeam exit for irradiation. We present technical details of the CAS-LIBB microbeam facility, particularly on the collimator, hardware, control program, as well as cell irradiation protocols available. Various factors contributing to the targeting and positioning precision are discussed along with accuracy measurement results.

Keywords

microbeam facility single-particle irradiation particle detection precision target location accuracy living cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zirkle, R. E., Advances in biological and medical physics, New York: Academic Press, 1957, 103–146.Google Scholar
  2. 2.
    Zirkle, R. E., Bloom, W., Irradiation of parts of cells, Science, 1953, 117: 487–493.CrossRefGoogle Scholar
  3. 3.
    Legge, G. J. F., A history of ion microbeams, Nucl. Instr. Meth. B, 1997, 130: 9–19.CrossRefGoogle Scholar
  4. 4.
    Folkard, M., Vojnovic, B., Prise, K. M. et al., A charged-particle microbeam: Part I: Development of an experimental system for targeting cells individually with counted particles, Int. J. Radiat. Biol., 1997, 72: 375–385.CrossRefGoogle Scholar
  5. 5.
    Folkard, M., Vojnovic, B., Hollis, K. J. et al., A charged-particle microbeam: Part II: A single-particle micro-collimation and detection system, Int. J. Radiat. Biol., 1997, 72: 387–395.CrossRefGoogle Scholar
  6. 6.
    Folkard, M., Vojnovic, B., Gilchrist, S. et al., The design and application of ion microbeams for irradiating living cells and tissues, Nucl. Instr. Meth. B., 2003, 210: 302–307.CrossRefGoogle Scholar
  7. 7.
    Randers-Pehrson, G., Geard, C. R., Johnson, G. et al., The Columbia University single-ion microbeam. Radiat. Res., 2001, 156: 210–214.CrossRefGoogle Scholar
  8. 8.
    Wu, L. J., Hei, T. K., Randers-Pehrson, G. et al., Columbia University microbeam: Development of an experimental system for targeting cells indiviually with counted particles, Nucl. Sci. & Tech. 1999, 10(3): 143–148.Google Scholar
  9. 9.
    Michelet, C., Moretto, Ph., Barberet, Ph. et al., A focused microbeam for targeting cells with counted multiple particles, Radiat. Res., 2002, 158: 370–371.Google Scholar
  10. 10.
    Greif, K. D., Brede, H. J., Frankenberg, D. et al., The PTB single ion microbeam for irradiation of living cells, Nucl. Instr. Meth. B., 2004, 217: 505–512.CrossRefGoogle Scholar
  11. 11.
    Peng, S. X., Folkard, M., Gilchrist, S., Locke, R. J. et al., Measurements of the targeting accuracy of the Gray laboratory charged-particle microbeam, Nucl. Instr. Meth. B., 2001, 179: 145–150.CrossRefGoogle Scholar
  12. 12.
    Kamiya, T., Yokota, W., Kobayashi, Y. et al., Development of an automated single cell irradiation system combined with a high-energy heavy ion microbeam system, Nucl. Instr. Meth. B., 2001, 181: 27–31.CrossRefGoogle Scholar
  13. 13.
    Bloom, W., Cellular responses, Rev. Modern Phys., 1959, 31: 66–71.CrossRefGoogle Scholar
  14. 14.
    Kadhim, M. A., Transmission of chromosomal instability after plutonium alpha-particle irradiation, Nature, 1992, 355: 738–740.CrossRefGoogle Scholar
  15. 15.
    Brenner, D. J., Hall, E. J., Microbeams: A potent mix of physics and biology, Radiat. Prot. Dosim, 2002, 99: 283–286.Google Scholar
  16. 16.
    Yu, Z. L., Ion beam and biology science, Physics, 1997, 26: 333–338.Google Scholar
  17. 17.
    Yu, Z. L., Shao, C. L., Dose effect of the tyrosine sample implanted by a low energy N+ ion beam. Radiat. Phys. Chem., 1994, 43: 349–351.CrossRefGoogle Scholar
  18. 18.
    Hei, T. K., Wu, L. J., Liu, S. X. et al., Mutagenic effects of a single and an exact number of a particles in mammalian cells, Proc. Natl. Acad. Sci. USA, 1997, 94: 3765–3770.CrossRefGoogle Scholar
  19. 19.
    Wu, L. J., Randers-Pehrson, G., Xu, A. et al., Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells, Proc. Natl. Acad. Sci. USA, 1999, 96: 4959–4964.CrossRefGoogle Scholar
  20. 20.
    Yang, J. B., Wu, L. J., Li, L. et al., Sequence analysis of lacZ mulations induced by ion beam irradiation in double-stranded M13mp18DNA, Sci. in China, Ser. C., 1997, 40: 107–112.CrossRefGoogle Scholar
  21. 21.
    Geard, C. R., Randers-Pehrson, G., Marino, S. A. et al., Intra- and intercellular responses after cell site-specific microbeam irradiation, Radiat. Res., 2000, 153: 233.Google Scholar
  22. 22.
    Hu, Z. W., Yu, Z. L., Wu, L. J., An optimization control program for the ASIPP microbeam. Nucl. Instr. Meth. A., 2003, 507: 617–621.CrossRefGoogle Scholar
  23. 23.
    Wang, X. F., Chen, L. Y., Yu, Z. L. et al., Quantitative single-ion irradiation by ASIPP microbeam, Chin. Phys. Lett., 2004, 21: 821–824.CrossRefGoogle Scholar
  24. 24.
    Wang, X. H., Wang, S. H., Yu, Z. L., ·· Image feature extracting of cells for the ASIPP microbeam,· · Comput. Engin. (in Chinese), 2003, 29 (18): 9–10.··Google Scholar
  25. 25.
    Wang, X. H., Wang, S. H., Yu, Z. L., District partition in image acquiring f cells and image distinguishing, Comput. Engin. (in Chinese), 2003, 29 (20): 35–37.Google Scholar
  26. 26.
    Peng, S. X., Wang, S. H., Yu, Z. L., Ion Micro-beam Manipulation: Deposition of given number of particles into the pre-determined position of individual cells, Vac. Sci & Technol. (in Chinese), 1999, 18: 38–46. ··Google Scholar
  27. 27.
    Zhan, F. R., Yu, Z. L.,··The calculation of the ion trajectory in an accelerating tube,·· High Power Laser and Particle Beams (in Chinese), 2000, 12(1): 103–106.Google Scholar
  28. 28.
    Zhan, F. R., Yu, Z. L., Hu, C. D. et al.,··Construction of electrostatic accelerator RF ion source, Vac. Sci. & Technol. (in Chinese), 2000, 20(3): 226–228.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Xufei Wang
    • 1
    • 2
  • Xiaohua Wang
    • 1
    • 2
  • Lianyun Chen
    • 1
    • 2
  • Zhiwen Hu
    • 1
    • 2
  • Jun Li
    • 1
    • 2
  • Yu Wu
    • 1
    • 2
  • Bin Chen
    • 1
    • 2
  • Suhua Hu
    • 1
    • 2
  • Jun Zhang
    • 1
    • 2
  • Mingliang Xu
    • 1
    • 2
  • Lijun Wu
    • 1
    • 2
  • Shaohu Wang
    • 1
    • 2
  • Huiyun Feng
    • 1
    • 2
  • Furu Zhan
    • 1
    • 2
  • Shixiang Peng
    • 1
    • 2
  • Chundong Hu
    • 1
    • 2
  • Shuqing Zhang
    • 1
    • 2
  • Jianjun Cheng
    • 1
    • 2
  • Zhongtao Shi
    • 1
    • 2
  • Hang Yuan
    • 1
    • 2
  • Haitao Yuan
    • 1
    • 2
  • Zengliang Yu
    • 1
    • 2
  1. 1.Key Laboratory of Ion Beam Bioengineering, Institute of Plasma PhysicsChinese Academy of SciencesHefeiChina
  2. 2.Key Laboratory of Ion Beam Bioengineering in Anhui ProvinceChinese Academy of SciencesHefeiChina

Personalised recommendations