Chinese Science Bulletin

, Volume 48, Issue 5, pp 437–440 | Cite as

Study of β-amyloid adsorption and aggregation on graphite by STM and AFM

  • Zhigang Wang
  • Lijun Wan
  • Chunqing Zhou
  • Xiaohong Fang
  • Chen Wang
  • Chunli BaiEmail author


The scanning tunneling microscopy (STM) and the atomic force microscopy (AFM) have been applied to the direct study of the adsorption and aggregation of β-amyloid(1–42)(Aβ42) on the hydrophobic graphite surface. It was found that Aβ42 were preferentially adsorbed on graphite defects such as the edges. Aβ42 peptides self-assembled into intermediate protofibrils, which in turn self-associated to form fibrils. Usually, two or more fibrils intertwined to form the helical structure. These results will provide an important clue to studying the aggregation process of β-amyloid.


sanning tunneling microscopy atomic force microscopy β-amyloid fibrillization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selkoe, D. J., The molecular pathology of Alzheimer’s disease, Neuron, 1991, 6: 487–498.CrossRefGoogle Scholar
  2. 2.
    Hardy, J. A., Higgins, G. A., A lzheimer’s disease: the amyloid cascade hypothesis, Science, 1992, 256: 184–185.CrossRefGoogle Scholar
  3. 3.
    Cohen, F. E., Pan, K. M., Huang, Z. et al., Structural clue to prion replication, Science, 1994, 264: 530–531.CrossRefGoogle Scholar
  4. 4.
    Supattapone, S., Nguyen, H. B., Cohen, F. E. et al., Elimination of prions by branched polyamines and implications for therapeutics, Proc. Natl. Acad. Sci. USA, 1999, 96: 14529–14534.CrossRefGoogle Scholar
  5. 5.
    Head, M. W., Ironside, J. W., Inhibition of prion-protein conversion: a therapeutic tool, Trends in Microbiology, 2000, 8: 6–8.CrossRefGoogle Scholar
  6. 6.
    Schladitz, C., Vieira, E. P., Hermel, H. et al., Amyloid-β-sheet formation at the air-water interface, Biophys, J., 1999, 77: 3305–3310.CrossRefGoogle Scholar
  7. 7.
    Serpell, L. C., Smith, J. M., Direct visualization of the beta-sheet structure of synthetic Alzheimer’s amyloid, J. Mol. Biol., 2000, 299: 225–231.CrossRefGoogle Scholar
  8. 8.
    Kayed, R., Bernhagen, J., Greenfield, N. et al., Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formationin vitro, J. Mol. Biol., 1999, 287: 781–796.CrossRefGoogle Scholar
  9. 9.
    Morozova-Roche, L. A., Zurdo, J., Spencer, A., et al. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants, J. Struct. Biol., 2000, 130: 339–351.CrossRefGoogle Scholar
  10. 10.
    Harper, J. D., Wong, S. S., Lieber, C. M. et al., Atomic force microscopy imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-β protein, Chem. Biol., 1997, 4: 951–959.CrossRefGoogle Scholar
  11. 11.
    Kowalewski, T., Holtzman, D. M.,In situ atomic force microscopy study of Alzheimer’s beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation, Proc. Natl. Acad. Sci. USA, 1999, 96: 3688–3693.CrossRefGoogle Scholar
  12. 12.
    Yang, D., Yip, C. M., Huang, T. H. J. et al., Manipulatin the Amyloid-beta aggregation pathway with chemical chaperones, J. Biol. Chem. 1999, 274: 32970–32974.CrossRefGoogle Scholar
  13. 13.
    Blackley, H. K. L., Sanders, G. H. W., Davies, M. C. et al., In-situ atomic force microscopy study of beta-amyloid fibrilization, J. Mol. Biol. 2000, 298: 833–840.CrossRefGoogle Scholar
  14. 14.
    Shivji, A. P., Brown, F., Davies, M. C. et al., Scanning tunneling microscopy studies of β-amyloid fibril structure and assembly, FEBS, 1995, 371: 25–28.CrossRefGoogle Scholar
  15. 15.
    Kelly, J. W., The alternative conformations of amyloidogenic proteins and their multi-step assembly pathway, Curr. Opin. Struct. Biol. 1998, 8: 101–106.CrossRefGoogle Scholar
  16. 16.
    Lomakin, A., Chung, D. S., Benedek, G. B. et al., On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants, Proc. Natl. Acad. Sci. USA 1996, 93: 1125–1129.CrossRefGoogle Scholar
  17. 17.
    Walsh, D. M., Lomakin, A., Benedek, G. B. et al., Amyloid beta-protein fibrillogenesis-—detection of a protofibrillar intermediate, J. Biol. Chem., 1997, 272: 22364–22372.CrossRefGoogle Scholar
  18. 18.
    Goldsbury, C., Kistler, J., Aebi, U. et al., Watching amyloid fibrils grow by time-lapse atomic force microscopy, Biochemistry 1999, 285: 33–39.Google Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Zhigang Wang
    • 1
  • Lijun Wan
    • 1
  • Chunqing Zhou
    • 1
  • Xiaohong Fang
    • 1
  • Chen Wang
    • 1
  • Chunli Bai
    • 1
    Email author
  1. 1.Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations