Advertisement

Chinese Science Bulletin

, Volume 45, Issue 14, pp 1258–1265 | Cite as

Properties and applications of embryonic stem cells

  • Xiaoxia Guo
  • Fuchu He
Reviews

Abstract

Mouse embryonic stem (ES) cells are pluripotent cells derived from the early embryo and can be propagated stably in undifferentiated statein vitro. They retain the ability to differentiate into all cell types found in the embryonic and adult bodyin vivo, and can be induced to differentiate into many cell types under appropriate culture conditionsin vitro. Using these properties, people have set up various differentiated systems of many cell types and tissuesin vitro. Through analysis of these systems, one can identify novel bioactive factors and reveal mechanisms of cell differentiation and organogenesis. ES cell-derived differentiated cells can also be applied to cell transplantation therapy. In addition, we summarized the features and potential applications of human ES cells.

Keywords

embryonic stem cell differentiationin vitro cell transplantation therapy gene targeting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evans, M. J., Kaufman, M. H., Establishment in culture of pluripotential cells from mouse embryos, Nature, 1981, 292(9): 154.CrossRefGoogle Scholar
  2. 2.
    Gail, R. M., Isolation of a pluripotential cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc. Nati. Acad. Sci. USA, 1981, 78(12): 7634.CrossRefGoogle Scholar
  3. 3.
    Shamblott, M. J., Axelman, J., Wang, S. et al., Derivation of pluripotent stem cells from cultured human primordial germ cells, Proc. Nati. Acad. Sci. USA, 1998, 95: 13726.CrossRefGoogle Scholar
  4. 4.
    Bradley, A., Evans, M., Kansfman, M. H. et al., Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines, Nature, 1984, 309: 255.CrossRefGoogle Scholar
  5. 5.
    Keller, G., Wall, C., Andrew, Z. C. F. et al., Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential, Blood, 1998, 92(3): 877.Google Scholar
  6. 6.
    Nakano, T., In vitro development of hematopoietic system from mouse embryonic stem cells: a new approach for embryonic hemalopoiesis, International Journal of Hematology, 1996, 65: 1.CrossRefGoogle Scholar
  7. 7.
    Potocnik, A. J., Kohler, H., Eichmann, K., Hemato-lymphoid in vitro reconstitution potential of subpopulations derived from in vitro differentiated embryonic stem cells, Proc. Nati. Acad. Sci. USA, 1997, 94: 10295.CrossRefGoogle Scholar
  8. 8.
    Bielinska, M., Narita, N., Heikinheimo, M. et al., Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm. Blood, 1996, 88: 3720.Google Scholar
  9. 9.
    Hirashima, M., Kataoka, H., Nishikawa, S. et al., Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis, Blood, 1999, 93: 1253.Google Scholar
  10. 10.
    Vittet, D., Prandini, M. H., Berthier, R. et al., Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps, Blood, 1996, 88(9): 3424.Google Scholar
  11. 11.
    Willie, A. N. G., Doclschman, T., Robbins, J. et al., Muscle isoactin expression during in vitro differentiation of murine embryonic stem cells, Pediatric Research, 1997, 41(2): 285.CrossRefGoogle Scholar
  12. 12.
    Doetschman, T. C., Eistetter, H., Katz, M. et al., The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardian, J. Embryol. Exp. Morph., 1985, 87: 27.Google Scholar
  13. 13.
    Joseph, M. M., Linda, C. S., Elizabeth, M. R. et al., Embryonic stem cell cardiogenesis (Applications for cardiovascular research), TCM, 1997. 7(2): 63.Google Scholar
  14. 14.
    Joseph, M. M., Lin, W., Samuelson, L. C., Vital staining of cardiac myocytes during embryonic stem cell cardiogenesis, Circ. Res., 1996, 78: 547.Google Scholar
  15. 15.
    Klug, M. G., Soonpa, M. H., Kol, G. Y. et al., Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac graftes, J. Clin. Invest., 1996, 98: 216.CrossRefGoogle Scholar
  16. 16.
    Castro-Obregon, S., Covarrubias, L., Role of relinoic acid and oxidative stress in embryonic stem cell death and neuronal differentiation, FEBS Letters, 1996, 381: 93.CrossRefGoogle Scholar
  17. 17.
    Bain, G., William, J. R., Yao, M. et al., Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture, Biochem. Biophys. Res. Commun., 1996, 223: 691.CrossRefGoogle Scholar
  18. 18.
    Green, J. B. A., Roads to neuralness: embryonic neural induction as derepression of a default state, Cell, 1994, 77: 317.CrossRefGoogle Scholar
  19. 19.
    Kennedy, M., Firpo, M., Choi, K. et al., Common precursor for primitive erythropoiesis and definitive haematopoiesis, Nature, 1997, 386: 488.CrossRefGoogle Scholar
  20. 20.
    Deacon, T., Dinsmore, J., Costantini, L. C. et al., Blastula-slage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation, Exp. Neurol., 1998, 149: 28.CrossRefGoogle Scholar
  21. 21.
    Brustle, O., Spiro, A. C., Karram, K. et al., In vitro-generated neural precursors participate in mammalian brain development, Proc. Nati. Acad. Sci. USA, 1997, 94: 14809.CrossRefGoogle Scholar
  22. 22.
    Ernst, M., Novak, U., Nicholson, S. E. et al., The carboxyl-terminal domains of gp130-related cytokine receptors are necessary for suppressing embryonic stem cell differentiation, Involvement of STAT3, J. Biol. Chem., 1999, 274(14): 9729.CrossRefGoogle Scholar
  23. 23.
    Niwa, H., Burdon, T., Chambers, I. et al., Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3, Genes & Development, 1998, 12: 2048.CrossRefGoogle Scholar
  24. 24.
    Raz, R., Lee, C. K., Cannizzaro, L. A. et al., Essential role of STAT3 for embryonic stem cell pluripotency, Proc. Nati. Acad. Sci. USA, 1999, 96(6): 2846.CrossRefGoogle Scholar
  25. 25.
    Nemetz, C., Hocke, G. M., Transcription factor STAT5 is an early marker of differentiation of murine embryonic stem cells, Differentiation, 1998, 62(5): 213.CrossRefGoogle Scholar
  26. 26.
    Anthony, R. G., Ashley, R. D., Ernst, M., Isolation and characterization of a leukaemia inhibitory factor-independent embryonic stem cell line, Int. J. Biochem. Cell Biol., 1997, 29(5): 829.CrossRefGoogle Scholar
  27. 27.
    Christoph, N. B., Karin, S.S., Selfrenewal of embryonic stem cells in the absence of feeder cells and exogenous leukaemia inhibitory factor, Growth Factors, 1997, 14: 145.CrossRefGoogle Scholar
  28. 28.
    Palmiter, R. D., Brinster, R. L., Germ line transformation of mice, Ann. Rev. Genet., 1986 20: 465.CrossRefGoogle Scholar
  29. 29.
    Brandon, E. P., Idzerda, R. L., Mcknight, G. S., Targeting the mouse genome: A compendium of knock-outs (I), Curr. Biol., 1995, 5(6): 625.CrossRefGoogle Scholar
  30. 30.
    Brandon, E. P., Idzerda, R. L., Mcknight, G. S., Targeting the mouse genome: A compendium of knock-outs (II), Curr. Biol., 1995, 5(7): 758.CrossRefGoogle Scholar
  31. 31.
    Brandon, E. P., Idzerda, R. L., Mcknight, G. S., Targeting the mouse genome: A compendium of knock-outs (III), Curr. Biol., 1995, 5(8): 873.CrossRefGoogle Scholar
  32. 32.
    Schweizer, A., Valdenaire, O., Koster, A. et al., Neonatal lethality in mice deficient in XCE, a novel member of the endothelin-converting enzyme and neutral endopeptidase family, J. Biol. Chem., 1999, 274(29): 20450.CrossRefGoogle Scholar
  33. 33.
    Weber, P., Bartsch, U., Schachner, M. et al., Na, K-ATPase subunit betal knock-in prevents lethality of beta2 deficiency in mice, J. Neurosci., 1998, 18(22): 9192.Google Scholar
  34. 34.
    Castilla, L. H., Wijmenga, C., Wang, Q. et al., Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene cbfb-myhl 1, Cell, 1996, 87(4): 687.CrossRefGoogle Scholar
  35. 35.
    Nada, S., Yagi, T., Takeda, H. et al., Constitutive activation of src family kinases in mouse embryos that lack Csk, Cell, 1993, 73: 1125.CrossRefGoogle Scholar
  36. 36.
    Rossant, J., Nagy, A., Genome engineering: the new mouse genetics. Nature Med., 1995, 1: 592.CrossRefGoogle Scholar
  37. 37.
    Araki, K., Takashi, I., Okuyama, K. et al., Efficiency of recombination by cre transient expression in embryonic stem cells: comparison of various promoters, J. Biochem., 1997, 122: 977.Google Scholar
  38. 38.
    Araki, K., Araki, M., Yamamura, K., Targeted integration of DNA using mutant lox sites in embryonic stem cells, Nucleic Acids Res., 1997, 25(4): 868.CrossRefGoogle Scholar
  39. 39.
    Sadlack, B., Merz, H., Schorle, H. et al., Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene, Cell, 1993, 75: 253.CrossRefGoogle Scholar
  40. 40.
    Kuhn, R., Lohler, J., Rennick, D. et al., Interleukin-10-deficient mice develop chronic enterocolitis, Cell, 1993, 75: 263.CrossRefGoogle Scholar
  41. 41.
    Tsai, F.Y., Browne, C. P., Orkin, S. H., Knock-in mutation of transcription factor GATA-3 into the GATA-1 locus: partial rescue of GATA-1 loss of function in erythroid cells. Dev. Biol., 1998, 196(2): 218.CrossRefGoogle Scholar
  42. 42.
    Soukharev, S., Miller, J. L., Sauer, B., Segmentai genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res., 1999, 27(18): 21.CrossRefGoogle Scholar
  43. 43.
    Thomson, J. A., Joseph, I. E., Sander, S. S. et al., Embryonic stem cell Lines derived from human blastocysts, Science, 1998, 282(6): 1145.CrossRefGoogle Scholar
  44. 44.
    Shamblott, M. J., Axelman, J., Gearhart, J. D. et al., Derivation of pluripotent stem cells from cultured human primordial germ cells, Proc. Nali. Acad. Sci. USA, 1998, 95: 13726.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Xiaoxia Guo
    • 1
    • 2
  • Fuchu He
    • 1
  1. 1.Beijing Institute of Radiation MedicineBeijingChina
  2. 2.Department of Life ScienceShandong UniversityJi’nanChina

Personalised recommendations