Science in China Series C: Life Sciences

, Volume 46, Issue 1, pp 10–17 | Cite as

QTL alleles on chromosome 7 from fatty Meishan pigs reduce fat deposition

  • Genhua Yue
  • Petra Beeckmann
  • Gerhard Moser
  • Elisabeth Müller
  • Hans Bartenschlager
  • Stanislav Cepica
  • Jaroslav Schröffel
  • Antonin Stratil
  • Hermann Geldermann
Article

Abstract

For detecting QTL in the whole swine genome, 1068 pigs from three F2 populations constructed by crossing European Wild boar and Pietrain (W×P), Meishan and Pietrain (M×P), and Wild Boar and Meishan (W × M) were genotyped for genetic markers evenly spaced at approximately 20 cM intervals. AQTL analysis was performed using a least-squares method. Here the results of the QTL analysis on the porcine chromosome 7 are presented. QTL for carcass composition (e.g. head weight, carcass length, backfat depth, abdominal fat and bacon meat) were mapped in the chromosomal region CYPA/CYPD-TNFB-S0102 in M×P and W×M, but not in W×P. The QTL explained 5.3%–27.2% of the F2 phenotypic variance in the two F2 populations. Most traits affected by the mapped QTL were related to carcass fatness. The mode of gene action of QTL was additive. Surprisingly, in contrast to the parental phenotype, the QTL alleles from fatty Meishan were associated with thinner backfat than Pietrain and Wild Boar alleles, suggesting that the genome of the fatty Meishan pig contains genes which can reduce fat content of carcass substantially.

Keywords

genomics pig SSC7 QTL backfat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, L., Haley, C. S., Ellegren, H. et al., Genetic-mapping of quantitative trait loci for growth and fatness in pigs, Science, 1994, 263(5154): 1771–1774.CrossRefPubMedGoogle Scholar
  2. 2.
    Geldermann, H., Muller, E., Beeckmann, P. et al., Mapping of quantitative-trait loci by means of marker genes in F-2 generations of wild boar, Pietrain and Meishan pigs, Anim. Breed. Genet., 1996, 113: 381–387.Google Scholar
  3. 3.
    Rothschild, M., Jacobson, C., Vaske, D. et al., The estrogen receptor locus is associated with a major gene influencing litter size in pigs, Proc. Natl. Acad. Sci. USA, 1996, 93(1): 201–205.CrossRefPubMedGoogle Scholar
  4. 4.
    Milan, D., Bidanel, P., Le Roy, P. et al., Current status of QTL detection in Large White × Meishan crosses in France, in Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Australia: Armidale, 1998, 26: 414–417.Google Scholar
  5. 5.
    Rohrer, G. A., Keele, J. W., Identification of quantitative trait loci affecting carcass composition in swine (I)—Fat deposition traits, J. Anim. Sci., 1998, 76(9): 2247–2254.PubMedGoogle Scholar
  6. 6.
    de Koning, D. J., Janss, L. L. G., Rattink, A. P. et al., Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa), Genetics, 1999, 152(4): 1679–1690.PubMedGoogle Scholar
  7. 7.
    Geldermann, H., Moser, G., Muller, E. et al., Status of genome and QTL mapping in pigs—Data of Hohenheim F-2 families, Archives Anim. Breed., 1999, 42(1): 67–81.Google Scholar
  8. 8.
    Muller, E., Moser, G., Bartenschlager, H. et al., Trait values of growth, carcass and meat quality in Wild Boar, Meishan and Pietrain pigs as well as their crossbred generations, J. Anim. Breed. Genet., 2000, 117(3): 189–202.CrossRefGoogle Scholar
  9. 9.
    Archibald, A. L., Haley, C. S., Brown, J. F. et al., The Pigmap consortium linkage map of the pig (Sus Scrofa), Mamm. Genome, 1995, 6(3): 157–175.CrossRefPubMedGoogle Scholar
  10. 10.
    Rohrer, G. A., Alexander, L. J., Hu, Z. L. et al., A comprehensive map of the porcine genome, Genome Res., 1996, 6(5): 371–391.CrossRefPubMedGoogle Scholar
  11. 11.
    Yue, G. H., Beeckmann, P., Bartenschlager, H. et al., Rapid and precise genotyping of porcine microsatellites, Electrophoresis, 1999, 20(17): 3358–3363.CrossRefPubMedGoogle Scholar
  12. 12.
    Juneja, R. K., Gahne, B., Simultaneous phenotyping of pig plasma alpha-protease inhibitors (PI1, PO1A, PO1B, PI2) and four other proteins (PO2, TF, CP, HPX) by a simple method of 2D horizontal electrophoresis, Anim. Genet., 1987, 18(3): 197–211.PubMedGoogle Scholar
  13. 13.
    Stratil, A., Cizova, D., Hojny, J. et al., Polymorphism of pig serum alpha-protease inhibitor-3 (PI3) and assignment of the locus to the Pi1, Po1A, Po1B, Pi2, Igh linkage group, Anim. Genetics, 1990, 21(3): 267–276.Google Scholar
  14. 14.
    Green, P., Falls, K., Crook, S., Documentation for CRIMAP, Version 2.4 (St Louis: Washington university school of medicine), 1990.Google Scholar
  15. 15.
    Haley, C. S., Knott, S. A., Elsen, J. M., Mapping quantitative trait loci in crosses between outbred lines using least-squares, Genetics, 1994, 136(3): 1195–1207.PubMedGoogle Scholar
  16. 16.
    Jansen, R. C., Interval mapping of multiple quantitative trait loci, Genetics, 1993, 135(1): 205–211.PubMedGoogle Scholar
  17. 17.
    Zeng, Z. B., Precision mapping of quantitative trait loci, Genetics, 1994, 136(4): 1457–1468.PubMedGoogle Scholar
  18. 18.
    Moser, G., Muller, E., Baeeckmann, P. et al., Mapping of QTL in F2 generations of Wild Boar, Pietrain and Meishan pigs, in Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Australia: Armidale, 1998, 44(26): 478–481.Google Scholar
  19. 19.
    Churchill, G. A., Doerge, R. W., Empirical threshold values for quantitative trait mapping, Genetics, 1994, 138(3): 963–971.PubMedGoogle Scholar
  20. 20.
    Andersson-Eklund, L., Marklund, L., Lundstrom, K. et al., Mapping quantitative trait loci for carcass and meat quality traits in a wild boar × large white intercross, J. Anim. Sci., 1998, 76(3): 694–700.PubMedGoogle Scholar
  21. 21.
    Knott, S. A., Marklund, L., Haley, C. S. et al., Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs, Genetics, 1998, 149(2): 1069–1080.PubMedGoogle Scholar
  22. 22.
    Renard, C., Vaiman, M., Possible relationships between SLA and porcine reproduction, Reproduction, Nutrition, Development, 1989, 29(5): 569–576.CrossRefPubMedGoogle Scholar
  23. 23.
    Rothschild, M. F., Renard, C., Bolet, G. et al., Effect of swine lymphocyte antigen haplotypes on birth and weaning weights in pigs, Anim. Genet., 1986, 17(3): 267–272.CrossRefPubMedGoogle Scholar
  24. 24.
    Rothschild, M. F., Ruvinsky, A., Genetics in pig, Cambridge: CAB International University Press, 1998.Google Scholar
  25. 25.
    Rothschild, M. F., Liu, H. C., Tuggle, C. K. et al., Analysis of pig chromosome 7 genetic markers for growth and carcass performance traits, J. Anim. Breed. Genet., 1995, 112(5-6): 341–348.Google Scholar
  26. 26.
    Xiao, J. H., Grandillo, S., Ahn, S. N. et al., Genes from wild rice improve yield, Nature, 1996, 384(6606): 223–224.CrossRefGoogle Scholar
  27. 27.
    Stunkard, A. J., Harris, J. R., Pedersen, N. L. et al., The body-mass index of twins who have been reared apart, N. Engl. J. Med., 1990, 322(21): 1483–1487.PubMedCrossRefGoogle Scholar
  28. 28.
    Winick, J. D., Friedman, J. M., Microsatellite marker content mapping of 12 candidate genes for obesity: Assembly of seven obesity screening panels for automated genotyping, Genome Res., 1998, 8(9): 985–994.PubMedGoogle Scholar
  29. 29.
    Genet, C., Renard, C., Cabau, C. et al., In the QTL region surrounding porcine MHC, gene order is conserved with human genome, Mamm. Genome, 2001, 12(3): 246–249.CrossRefPubMedGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Genhua Yue
    • 1
  • Petra Beeckmann
    • 1
  • Gerhard Moser
    • 1
  • Elisabeth Müller
    • 1
  • Hans Bartenschlager
    • 1
  • Stanislav Cepica
    • 2
  • Jaroslav Schröffel
    • 2
  • Antonin Stratil
    • 2
  • Hermann Geldermann
    • 1
  1. 1.Department of Animal Breeding and BiotechnologyUniversity of HohenheimStuttgartGermany
  2. 2.Institute of Animal Physiology and GeneticsAcademy of Sciences of the Czech RepublicTzechoslovakia

Personalised recommendations