Advertisement

Journal of Visualization

, Volume 4, Issue 2, pp 121–129 | Cite as

Principal component analysis of dual-luminophore pressure/temperature sensitive paints

  • Carroll B. F. 
  • Hubner J. P. 
  • Schanze K. S. 
  • Bedlek-Anslow J. M. 
Article

Abstract

Multi-luminophore pressure/temperature sensitive paints are investigated using principal component analysis of the spectral emission from the coatings. Two formulations are investigated. The first consists of Ru (4,7-diphenylphenanthroline) dichloride (Ruphen) and Coumarin-7 luminophores. The second coating contains Pt(II) meso-tetrakis (pentafluorophenyl) porphine (PtTFPP) and diethyloxadicarbocyanine iodide (DOCI). The principal component analysis revealed that the Ruphen/Coumarin-7 coating requires three fundamental spectra or modes to adequately model the coating emission characteristics. The PtTFPP/DOCI coating was modeled adequately with only two modes. Analysis of the PtTFFP/DOCI coating also revealed that a temperature independent calibration of the pressure sensing function could be developed. The requirement for a wind-off reference image was also eliminated.

Keywords

pressure sensor temperature sensor luminescent coating. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bencic, T., Temperature Correction for Pressure-Sensitive Paint, NASA Tech Briefs, Jan, (2000), 50–51.Google Scholar
  2. Carroll, B. F., Hubner, J. P., Schanze, K. S., Bedlek, J. and Morris, M., Pressure and Temperature Measurements with a Dual-Luminophore Coating, 18th ICIASF Record (Toulouse, France, June 13, 1999), 18.1–18.8.Google Scholar
  3. Hubner, J. P., Carroll, B. F. and Schanze, K. S., Temperature Compensation Model for Pressure-Sensitive Paint, FEDSM97-3470, ASME Fluids Engineering Division Summer Meeting, (Jun. 1997).Google Scholar
  4. Lawton, W. H. and Sylvestre, E. A., Self Modeling Curve Resolution, Technometrics, 13 (1971), 617–633.CrossRefGoogle Scholar
  5. Malinowski, E. R. and Howery, D. G., Factor Analysis in Chemistry, (1980), John Wiley & Sons, New York.zbMATHGoogle Scholar
  6. Saltiel, J., Sears, Jr., D. F., Choi, J. O., Sun, Y. P. and Eaker, D. W., Fluorescence, Fluorescence-Excitation, and Ultraviolet Absorption Spectra of trans-1-(2-Naphthyl)-2-phenylethene Conformers, Journal of Physical Chemistry, 98 (1994), 35–46.CrossRefGoogle Scholar
  7. Schanze, K. S. Carroll, B. F., Korotkevitch, S. and Morris, M. J., Temperature Dependence of Pressure Sensitive Paints, AIAA Journal, 35-2 (Feb. 1997), 306–310.CrossRefGoogle Scholar
  8. Sun, Y. P., Sears, D. F. and Saltiel, J., 3-Component Self-Modeling Technique Applied to Luminescence Spectra, Analytical Chemistry, 59-20 (1987), 2515–2519.CrossRefGoogle Scholar
  9. Woodmansee, M. A. and Dutton, J. C., Treating Temperature-Sensitivity Effects of Pressure-Sensitive Paint Measurements, Experiments in Fluids, 24 (1998), 163–174.CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2001

Authors and Affiliations

  • Carroll B. F. 
    • 1
  • Hubner J. P. 
    • 1
  • Schanze K. S. 
    • 2
  • Bedlek-Anslow J. M. 
    • 2
  1. 1.Department of Aerospace Engineering, Mechanics & Engineering ScienceUniversity of FloridaGainesvilleU.S.A.
  2. 2.Department of ChemistryUniversity of FloridaGainesvilleU.S.A.

Personalised recommendations