Journal of Visualization

, Volume 5, Issue 3, pp 243–254

Development of Genetic Algorithm based 3D-PTV technique

  • Doh D. H. 
  • Kim D. H. 
  • Cho K. R. 
  • Cho Y. B. 
  • Lee W. J. 
  • Saga T. 
  • Kobayashi T. 
Article

Abstract

A new 3D-PTV technique has been developed using GA (Genetic Algorithm). The measurement system consists of three CCD cameras, Ar-ion laser, an image grabber and a host computer. One-to-one correspondences are made by taking advantage of the combinatorial optimization of the genetic algorithm for the whole particles of the two images during the time interval of image frames. Two fitness functions are introduced in order to enhance the correspondences of the particles. One is based on the concept of continuum theory and the other one is based on the minimum error of threedimensional distance. Performance of the developed algorithm is tested using a set of virtual images constructed by the use of LES data set on an impinging jet. The developed 3D-PTV system is successfully applied to the measurement of flow characteristics of the wake of a circular cylinder.

Keywords

3D-PTV genetic algorithm impinging jet circular cylinder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. J., Particle-Imaging Techniques for Experimental Fluid Mechanics, Ann. Rev. Fluid Mech., 23 (1991), 261.CrossRefGoogle Scholar
  2. Agui, J. C. and Jimenez, J., On the Performance of Particle Tracking, J. Fluid Mech., 185 (1987), 447.CrossRefGoogle Scholar
  3. Ballard, D. H. and Brown, C. M., Computer Vision, (1982), 195, Prentice-Hall, New Jersey.Google Scholar
  4. Brede, M., Eckelmann, H. and Rockwell, D., On Secondary Vortices in the Cylinder Wake, Phys. Fluids, 8 (1996), 2117–2124.CrossRefGoogle Scholar
  5. Chang, T. P. and Tatterson, G. B., An Automated Analysis Method for Complex Three Dimensional Mean Flow Fields, Proc. Third Int. Symp. Flow Visualization (1983), 266–273.Google Scholar
  6. Doh, D. H., A Study on Three Dimensional Particle Imaging Thermometry and Velocimetry Using Liquid Crystal, Ph.D. Thesis, The Univ. of Tokyo (1995).Google Scholar
  7. Doh, D. H., Cho, K. R., Baek, T. S. and Cho, Y. B., 3D-PTV Using a Genetic Algorithm, Proc. of Winter Annual Conference the Society of Airconditioning and Refrigeration Engineers of Korea, Vol. 2 (2000a), 601–605.Google Scholar
  8. Doh, D. H., Kim, D. H., Choi, S. H., Hong, S. D., Saga, T. and Kobayashi, T., Single-Frame (Two-Field Image) 3D-PTV for High Speed Flows, Exp. in Fluid, Suppl. (2000b), 85–98.Google Scholar
  9. Goldberg, D. E., Optimal Initial Population Size for Binary-coded Genetic Algorithm, TCGA Report No. 85001, Univ. of Alabama (1985).Google Scholar
  10. Kasagi, N., Hirata, M., Nishino, K., Ninomiya, N. and Koizumi, N., Three-dimensional Velocity Measurement via Digital Image Processing Technique, J. of Flow Visualization Soc. Jpn., 7–26 (1987), 283–288.Google Scholar
  11. Kasagi, N. and Nishino, K., Probing Turbulence with Three Dimensional Particle Tracking Velocimetry, Exp. Thermal and Fluid Sci. 4 (1991), 601–612.CrossRefGoogle Scholar
  12. Kobayashi, T., Saga, T. and Sekimoto, K., Velocity Measurement of Three-dimensional Flow Around Rotating Parallel Disks by Digital Image Processing, ASME FED, No. 85 (1989), 29–36.Google Scholar
  13. Kobayashi, T., Saga, T., Haeno, T. and Tsuda, N., Development of a Real-time Velocity Measurement System for High Reynolds Fluid Flo Using a Digital Image Processing Design, Experimental and Numerical Flow Visualization (Ed. Khalighia, B. et al.), ASME FED, No. 128 (1991), 9–14.Google Scholar
  14. Lourenco, L. M. and Shih, C., Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder, A Particle Image Velocimetry Study (1993), (extracted from Mittal (1996)).Google Scholar
  15. Maas, H. G., Gruen, A. and Papantoniou, D. A., Particle Tracking Velocimetry in Three-dimensional Flows, Part 1 Photogrammetric Determination of Particle Coordinates, Exp. in Fluids, 15 (1993), 133–146.CrossRefGoogle Scholar
  16. Mittal, R., Progress on LES of Flow Past a Circular Cylinder, Annual Research Briefs-1996, Center for Turbulence Research, Stanford Univ. NASA Ames Research (1996), 233–241.Google Scholar
  17. Ohyama, R., Takagi, T., Tsukiji, T., Nakanishi, S. and Kaneko, K., Particle Tracking Technique and Velocity Measurement of Visualized Flow Fields by means of Genetic Algorithms, J. of Flow Visualization Soc. Jpn., 13-Suppl. No. 1 (1993), 22–25.Google Scholar
  18. Okamoto, K., Nishio, S., Kobayashi, T. and Saga, T., Standard Images for Particle Imaging Velocimetry, Proc. PIV’97-Fukui (Fukui), (1997), 229–236.Google Scholar
  19. Ong, L. and Wallace, J., The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder, Exp. in Fluids, 20 (1996), 441–453.CrossRefGoogle Scholar
  20. Persillon, H. and Braza, M., Physical Analysis of the Transition to Turbulence in the Wake of a Circular Cylinder by Three-dimensional N-S Simulation, J. Fluid Mech., 365 (1998), 23–88.MATHCrossRefGoogle Scholar
  21. Racca, R. G. and Dewey, J. M., A Method for Automatic Particle Tracking in a Three-dimensional Flow Field, Exp. in Fluids, 6 (1988), 25–32.CrossRefGoogle Scholar
  22. Sung, J. and Yoo, J. Y., Near-Wake Vortex Motions Behind a Circular Cylinder at Low Reynolds Number, Journal of Fluids and Structures, to be published (2002).Google Scholar
  23. Utami, T. and Blackwelder, R., A Cross Correlation Technique for Velocity Field Extraction from Particulate Visualization, Exp. in Fluids, 10 (1991), 213–223.CrossRefGoogle Scholar
  24. Visualization Society of Japan, Standard Project, Visualization Society of Japan (1999), http://vsj.or.jp/pivGoogle Scholar
  25. Wu, J., Sheridan, J., Welsh, M. C., Hourigan, K. and Thompson M., Longitudinal Vortex Structures in a Cylinder Wake, Phys. Fluids, 6 (1994), 2883–2885.CrossRefGoogle Scholar
  26. Yamada, H. and Yamane, K., Particle Image Velocimetry Using a Genetic Algorithm, J. of Flow Visualization Soc. Jpn., 15-Suppl. No.1 (1995), 165–168.Google Scholar

Copyright information

© The Visualization Society of Japan 2002

Authors and Affiliations

  • Doh D. H. 
    • 1
  • Kim D. H. 
    • 1
  • Cho K. R. 
    • 1
  • Cho Y. B. 
    • 1
  • Lee W. J. 
    • 1
  • Saga T. 
    • 2
  • Kobayashi T. 
    • 2
  1. 1.Division of Mechanical and Information EngineeringKorea Maritime UniversityBusanKorea
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations