Journal of Visualization

, Volume 10, Issue 1, pp 99–110

3C PIV and PLIF measurement in turbulent mixing

Round jet impingement
  • Reungoat D. 
  • Rivière N. 
  • Fauré J. P. 


The present work focuses on the measurements of instantaneous concentration fields of a passive scalar due to an impinging round jet injection into a liquid filled rectangular tank. Simultaneous measurements of velocity and passive scalar concentration fields have been conducted by using Particle Image Velocimetry (planar 2C and 3C PIV) and Planar Laser Induced Fluorescence (PLIF) techniques. The mixing injection behavior is analyzed for several injection values of depth and flow rate. Results showed the classical developing and self-similar regions of the jet, the mixing layer and the coupled concentration and velocity fields due to impingement. Finally, 3C PIV reveals a 3D flow jet structure which seems to be a swirl that does not disturb 2D analysis.


Impinging jet Turbulent SPIV PLIF 



Inlet diameter mm


Impinging distance nozzle (deep) mm


Centerline distance (nozzle/measurement point) mm


Reynolds number-


Mean inlet average velocity m/s

\(\overline {V_c } \)

Mean centerline velocity m/s

\(\overline {V_c (0)} \)

Mean inlet centerline (maximum) velocity m/s


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aanen, L., Telesca, A. and Westerweel, J., Measurement of turbulent mixing using PIV and LIF. Machine Graphics and vision, 8-4 (1999), 529–543.Google Scholar
  2. Batchelor, G. K., An introduction to fluid dynamics, (2001), Cambridge University press.Google Scholar
  3. Benayad, S., Salem, A. and Legrand, J., Study of mixing in an axisymmetric coflowing liquid jet by coupling L. D. A. to an electrochemical method, Journal of Applied electrochemistry, 30 (2000), 209–316.CrossRefGoogle Scholar
  4. Bian, S., Ceccio, S. L. and Driscoll, J. F., Simultaneous velocity/concentration measurements of a turbulent water jet using CPIV and CPLIF, 11th International Symposium on Flow Visualization (Notre Dame), (2004).Google Scholar
  5. Bitting, J. W., Nikitopoulos, D. E., Gogineni S. P. and Gutmark, E. J., Visualization and 2 colors DPIV measurement of flows in circular and square coaxial nozzles, Experiments in Fluids, 31 (2001), 1–12.CrossRefGoogle Scholar
  6. Brossard, C., Bresson, A., Gicquel, P. and Grisch, F., Cartographies simultanées de vitesse, de température et de concentration par PIV et PLIF d’un jet d’air chaud ensemencé, 9ème Congrés Francophone de Vélocimétrie Laser A.3, 1 (2004), 14–17.Google Scholar
  7. Deusch, S. and Dracos, T., Time resolved 3D passive scalar concentration-field imaging by laser induced fluorescence in moving liquids, Meas. Sci. Technol., 12 (2000), 188–200.CrossRefGoogle Scholar
  8. Chen, Y. C., Ma, C. F., Qin, M. and Li, Y. X., Theoretical study on impingement heat transfer with single-phase free-surface slot jets International Journal of Heat and Mass Transfer, 48 (2005) 3381–3386.CrossRefGoogle Scholar
  9. Dimotakis, P. E., Some issues on turbulent mixing and turbulence, Turbulence symposium in honor of W. C. Reynolds, Monterey, GALCIT report FM93-1, (1993).Google Scholar
  10. Ding, R., Revstedt, J. and Fuchs, L., LIF study of mixing in circular impinging jets effects of boundary conditions, Proceedings of PSFVIP-4 (Chamonix), (2003), F4015.Google Scholar
  11. Fondse, H., Leijdens, H. and Ooms, G., On the influence of the exit conditions on the entrainment rate in the development region of a free, round, turbulent jet, Applied Scientific Research, 40 (1983), 355–375.CrossRefGoogle Scholar
  12. Fujisawa, N., Nakamura, K. and Srinivas, K., Interaction of Two Parallel Plane Jets of Different Velocities, Journal of Visualization, 7-2 (2004), 135–142.CrossRefGoogle Scholar
  13. Fukushima, C., Aanen, L. and Westerweel, J., Simultaneous Velocity and Concentration Measurements of an Axisymmetric Turbulent Jet Using a Combined PIV/LIF, The Fifth JSME-KSME Fluids Engineering Conference (Nagoya, Japan) (2002).Google Scholar
  14. Friehe, C. A., Van Atta C. W. and Gibson C. H., Jet turbulence: Dissipation rate measurements and correlations, In AGARD Turbulent shear flows (1971), CP-93, 18-1-18-7.Google Scholar
  15. Guillard, F., Fritzon, R., Revstedt, J., Tägardh, C., Alden, M. and Fuchs L., Mixing in a confined turbulent impinging jet using planar laser-induced fluorescence, Experiments in Fluids, 25-2 (1998), 143–150.CrossRefGoogle Scholar
  16. Harran, G., Chassaing, P., Joly, L. and Chibat, M., Etude numérique des effets de densité dans un jet de mélange turbulent en microgravité, Rev Gén Therm, 35 (1996), 151–176.CrossRefGoogle Scholar
  17. Hu, H., Kobayashi, T., Saga, T., Segawa, S. and Taniguchi, N., Particle image velocimetry and planar laser-induced fluorescence measurements on lobed jet mixing flows, Experiments in Fluids suppl. (2000), S141–S157.Google Scholar
  18. Hattori, H. and Nagano, Y., Direct Numerical Simulation of Turbulent Heat Transfer in Plane Impinging Jet, Int. Journal of Heat and Fluid Flow, 25-5 (2004), 749–758.CrossRefGoogle Scholar
  19. Koochesfahani, M., Cohn, R. and McKinnon, C., Simultaneous whole-field measurements of velocity and concentration fields using a combination of MTV and LIF,. Meas. Sci. Technol., 11 (2000), 1289–1300.CrossRefGoogle Scholar
  20. Law, A. W. K. and Wang, H., Measurement of mixing processes with combined digital particle image velocimetry and planar laser induced fluorescence, Exp. Thermal Fluid Sci., 22 (2000), 213–229.CrossRefGoogle Scholar
  21. Matin, H., Heat and mass transfer between impinging gas jets and solid surfaces, Adv. heat transfer, 13 (1977), 1–60.CrossRefGoogle Scholar
  22. Nishino, K., Samada, M., Kasuya, K. and Torii, K., Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow, Int. Journal of Heat and Fluid Flow, 17-3 (1996), 193–201CrossRefGoogle Scholar
  23. Raffel, M., Willert, C. and Kompenhas, J., Particle Image Velocimetry: A practical guide, (1998), Springer -Verlag Berlin Heidelberg.Google Scholar
  24. Sakakibara, J. and Hori, T., Three-dimensional vortical structures of a round impinging jet measured by scanning stereo-PIV, 6th Int. Symp. on Particle Image Velocimetry, (2005).Google Scholar
  25. Saylor, J. R., Differential diffusion in turbulent and oscillatory nonturbulent, water flows, (1993), Ph. D. Thesis, Yale University.Google Scholar
  26. Saylor, J. R. and Sreenivasan, K. R., Differential diffusion in low Reynolds number water jets,, Phys. Fluids, 10-5 (1998), 1135–1146.CrossRefMathSciNetGoogle Scholar
  27. Stricker, J. and Zakharin, B., 3-D Turbulent density field diagnostics by tomographic Moire, technique, Experiments in Fluids, 23 (1997), 76–85.CrossRefGoogle Scholar
  28. Su, L. K., Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets, Center for Turbulence Research Annual Research Briefs, (1998).Google Scholar
  29. Tsurikov, M. S. and Clemens, N. T., Scalar/velocity imaging of the fine scales in gas-phase turbulent jets, American Institute of Aeronautics and Astronautics.Google Scholar
  30. Webster, D. R., Roberts, P. J. W. and Ra’ad, L., Simultaneous DPTV/PLIF measurements of a turbulent jet, Experiments in Fluids, 30 (2001), 65–72.CrossRefGoogle Scholar
  31. Watanabe, Y., Hashizume, Y. and Fujisawa, N., Simultaneous Flow Visualization and PIV Measurement of Turbulent Buoyant Plume, Journal of Visualization, 8-4 (2005), 293–294.CrossRefGoogle Scholar
  32. Weisgraber, T. H. and Liepmann, D., Turbulent structure during transition to self-similarity in a round jet, Experiments in Fluids, 24 (1998), 210–224.CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2007

Authors and Affiliations

  • Reungoat D. 
    • 1
  • Rivière N. 
    • 1
    • 2
  • Fauré J. P. 
    • 2
  1. 1.TREFLE laboratoryPessacFrance
  2. 2.CEA CESTALe BarpFrance

Personalised recommendations