Advertisement

Journal of Visualization

, Volume 7, Issue 1, pp 43–54 | Cite as

Analysis of turbulent premixed flame structure using simultaneous PIV-OH PLIF

  • Cho Y. 
  • Kim J. -H. 
  • Cho T 
  • Moon I 
  • Yoon Y 
  • Lee C. 
Article

Abstract

In the present study, we used a simultaneous PIV-OH PLIF measurement to acquire the strain rate and the chemical intensity and suggested a new combustion phase diagram. This simultaneous measurement was used to analyze the flame structure and to classify the combustion regimes of the opposed impinging jet combustor according to the change of the orifice diameters at the pre-chambers. The shear strain rates were obtained from the velocity measurement by PIV to represent flow characteristics and the OH radical intensities were obtained from OH PUF to indicate the flame characteristics. When the strain rate and OH intensity at each point of the measurement zones are plotted at the strain rate-chemical intensity diagram, the distribution of each case showed the characteristics of each flame regime. The change of combustor condition made different distribution in the combustion phase diagram. As the orifice diameter of the pre-chamber decreases, well-mixed turbulent flames are produced and the combustion phase is moved from the moderated turbulence regime to the thickened reaction regime.

Keywords

simultaneous PIV-OH PUF opposed impinging jet combustor Borghi diagram the strain rate-chemical intensity diagram combustion phase diagram thickened reaction regime 

References

  1. Abdel-Gayed, R. G. and Bradley, D., Combustion Regime and Straining of Turbulent Premixed Flame, 1989, Combust. Flame, 78 (1989), 213.CrossRefGoogle Scholar
  2. Borghi, R., On the Structure of Turbulent Premixed Flames, Recent Advance in Aeronautical Science (Bruno, C. & Case, C.; Eds), Pergamon, (1984).Google Scholar
  3. Bray, K. N. C., Champion, M. and Libby, P. A, Extinction of Premixed Flames in Turbulent Counterflowing Streams with Unequal Enthalpies, Combust. Flame, 107 (1996), 53.CrossRefGoogle Scholar
  4. Broadwell, J. E. and Lutz, A. E., Combust. Flame, 114 (1998), 319.CrossRefGoogle Scholar
  5. Chen, J. H. and Im, H. G., Correlation of Flame speed with Stretch in Turbulent Premixed Methane/Air Flames, Proc. Combust. Inst., 27 (1998), 819.Google Scholar
  6. Chomiak, J. and Jarosinski, J., Flame Quenching by Turbulence, Combust. Flame, 48 (1982), 241.CrossRefGoogle Scholar
  7. Darabiha, N., The Effect of Strain Rate on a Premixed Laminar Flame, Combust. Flame, 64 (1986), 203.CrossRefGoogle Scholar
  8. Friedlander, S. K., Smoke, Dust, and Haze 2nd ed., Oxford New York, (2000), 222. Han, D. H and Mungal, M. G., Simultaneous Measrement of Velocity and CH Layer Distribution in Turbulent Non-Premixed Flames, Proc. Combust. Inst, 28 (2000).Google Scholar
  9. Kostiuk, L. W., Bray, K. N. C. and Cheng, R. K., Experimental Study of Premixed Turbulent Combustion in Opposed Streams. Part, Combust. Flame, 92 (1993), 396.CrossRefGoogle Scholar
  10. Kothnur, P. S, Tsurikov, M. S., Clemens, N. T., Donbar, J. M. and Carter, C. D., Planar Imaging of CH, OH and Velocity in Turbulent Nonpremixed Jet Flames, Proc. Combust. Inst., 29 (2002).Google Scholar
  11. Lee, H. G., Jeuug, I.-S. and Yoon, Y., An Experimental Study on NOx Reduction by the Opposed Impinging Jet Flames, The First Asia-Pacific Conference on Combustion, Osaka, Japan, May 1997.Google Scholar
  12. Lim, S., Yoon, Y., Lee, C. and Jeung, I. -S., Effect of Strain Rate on NOx Reduction in Opposed Impinging Jet Flame Combustor, 10th Int I Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 2000.Google Scholar
  13. Lipatnikov, A. N. and Chomiak, J., Turbulent Flame Speed and Thickness, Prog. Energy Combust. Sci., 28 (2002), 1.CrossRefGoogle Scholar
  14. Rehm, J. E. and Clemens, N. T., The Relationship Between Vorticity/Strain and Reaction Zone Structure in Turbulent Non-Premixed Jet Flames, Proc. Combust. Inst., 27 (1998), 1113.Google Scholar
  15. Seitzman, J. M., Ungut, A., Paul, P. H. and Hanson, R. K., Imaging and Characterization of OH Structure in a Turbulent Nonpremixed Flame,Froc. Combust. Inst., 23 (1990), 637.CrossRefGoogle Scholar
  16. Turns, S. R.,An Introduction to Combustion, MacGraw-Hill, New York (1996).Google Scholar
  17. Watson, K. A., Lyons, K. M., Donbar, J. M. and Carter, C. D., Scalar and Velocity Field Measurements in a Lifted CH4-Air Diffusion Flame, Combustion Flame, 117 (1999), 257.CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2004

Authors and Affiliations

  • Cho Y. 
    • 1
  • Kim J. -H. 
    • 1
  • Cho T 
    • 1
  • Moon I 
    • 1
  • Yoon Y 
    • 1
  • Lee C. 
    • 2
  1. 1.School of Mechanical and Aerospace Engr.Seoul National UniversitySeoulKorea
  2. 2.Department of Aerospace EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations