Journal of Visualization

, Volume 2, Issue 3–4, pp 309–319 | Cite as

Recent advances in laser-based diagnostics for gaseous flows

  • Hanson R. 
  • Baer D. 
  • Morris C. 
  • Thurber M. 
  • Furlong E. 
  • Wehe S. 
Article

Abstract

Laser-based diagnostic techniques offer unique capabilities for experimentation on gaseous flows. In this paper, we overview recent progress of two concepts: spectrally resolved absorption and planar laser-induced fluorescence (PLIF) imaging. The absorption measurements utilize tunable diode lasers (TDLs) as light sources. Recent TDL applications include a wavelength-multiplexed system for rapid temperature sensing for use in combustion control, and absorption probes for time-resolved measurements of temperature, velocity and species concentrations in a hypersonic shock tunnel. Recent PLIF work includes applications to supersonic, exothermic flowfields relevant to ram accelerators, and development of a method for imaging temperature in air flows using acetone seeding.

Keywords

PLIF diode laser absorption spectroscopy combustion control hypersonic supersonic acetone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chou, S. I., Baer, D. S. and Hanson, R. K., “Diode-Laser Absorption Measurements of CH3Cl and CH4 near 1.65 μm,” Applied Optics, 36–15, (1997), 3288.Google Scholar
  2. Clemens. N. T. and Paul, P. H., “Effects of Heat Release on the Near Field Flow Structure of Hydrogen Jet Diffusion Flames,” Combustion and Flame, 102–3 (1995), 271.Google Scholar
  3. Furlong, E. R., Baer, D. S. and Hanson, R. K., “Combustion Control Using a Multiplexed Diode Laser Sensor System,” 34th AIAA Aerospace Sciences Meeting, Reno, NV, January 16–20 (1996a), paper AIAA 96-0756.Google Scholar
  4. Furlong, E. R., Baer, D. S. and Hanson, R. K., “Combustion Control Using a Multiplexed Diode Laser Sensor System,” Twenty-Sixth Symposium (International) on Combustion (1996b), The Combustion Institute, Pittsburgh, 2851.Google Scholar
  5. Furlong, E. R., Mihalcea, R. M., Webber, M. E., Baer, D.S. and Hanson, R. K., 1998, “Diode Laser Sensors for Real-Time Control of Pulsed Combustion Systems,” 34th AIAA Joint Propulsion Conference, Cleveland, OH (1998), paper AIAA 98-3949.Google Scholar
  6. Hanson, R. K., Kuntz, P. A. and Kruger, C. H., “High-Resolution Spectroscopy of Combustion Gases Using a Tunable Infrared Diode Laser,” Applied Optics, 16–8 (1977), 2045.Google Scholar
  7. Hertzberg, A., Bruckner, A. P. and Bogdanoff, D. W., “Ram Accelerator: A New Chemical Method for Accelerating Projectiles to Ultrahigh Velocities,” AIAA Journal, 26–2 (1988), 195.Google Scholar
  8. Kamel, M. R., Morris, C. I. and Hanson, R. K., “Simultaneous PLIF and Schlieren Imaging of Hypersonic Reactive Flows Around Blunted Cylinders,” 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9 (1996), paper AIAA 97-0914.Google Scholar
  9. Lozano, A., Yip, B. and Hanson, R. K., “Acetone: a Tracer for Concentration Measurements in Gaseous Flows by Planar Laser-Induced Fluorescence,” Experiments in Fluids, 13–6 (1992), 369.Google Scholar
  10. Mihalcea, R. M., Webber, M. E., Baer, D. S. and Hanson, R. K., “Diode Laser Sensor for Combustion Emissions Monitoring,” Proceedings of VSJ-SPIE98, December 6–9, 1998, Yokohama, Japan (1998), paper no. AB059,Google Scholar
  11. Morris, C. I., Kamel, M. R. and Hanson, R. K., “Expansion Tube Investigation of Ram-Accelerator Projectile Flowfields,” 2nd AIAA Joint Propulsion Conference, Orlando, FL, July 1–3 (1996), paper AIAA 96-2680.Google Scholar
  12. Parr, T.P., Gutmark, E.J., Wilson, K.J., Hanson-Parr, D. M., Yu, K., Smith, R.A. and Schadow, K.C., 1996, “Compact Incinerator Afterburner Concept Based on Vortex Combustion,” Twenty-Sixth Symposium (International) on Combustion (1996), The Combustion Institute, Pittsburgh, 2471.Google Scholar
  13. Philippe, L. C. and Hanson, R. K., “Laser-Absorption Mass Flux Sensor for High-Speed Air Flows,” Optics Letters, 16–24 (1992), 2002.Google Scholar
  14. Rea, E. C., Jr., Salimian, S. and Hanson, R. K., “Rapid-Tuning, Frequency-Doubled Ring Dye Laser for High-Resolution Absorption Spectroscopy in Shock-Heated Gases,” Applied Optics, 23–11 (1984), 1691.Google Scholar
  15. Tait, N. P. and Greenhalgh, D. A., “2D Laser-Induced Fluorescence Imaging of Parent Fuel Fraction in Nonpremixed Combustion,” Twenty-Fourth Symposium (International) on Combustion (1992), The Combustion Institute, Pittsburgh, 1621.Google Scholar
  16. Thurber, M. C., Grisch, F. and Hanson, R. K., “Temperature Imaging with Single- and Dual-Wavelength Acetone Planar Laser-Induced Fluorescence,” Optics Letters 22, 251–253.Google Scholar
  17. Wehe, S. D., Baer, D. S. and Hanson, R.K., “Tunable Diode-Laser Absorption Measurements of Temperature, Velocity, and H2O in Hypersonic Flows,” 33rd AIAA Joint Propulsion Conference, Seattle, WA, July 6–9 (1997), paper AIAA-97-3267.Google Scholar
  18. Wehe, S. D., Baer, D. S., Hanson, R. K. and Chadwick, K. M., “Measurements of Gas Temperature and Velocity in Hypervelocity Flows Using Diode-Laser Sensors,” 20th AIAA Advanced Measurement and Ground Testing Technology Conference Albuquerque, NM, June 15–18 (1998a), paper AIAA-98-2699.Google Scholar
  19. Wehe, S. D., Baer, D. S. and Hanson, R. K., “Diode-Laser Sensor for Velocity Measurements in Hypervelocity Flows,” submitted for publication to Optics Letters (1998b).Google Scholar
  20. Yuen, L. S., Peters, J. E. and Lucht, R. P., 1997, “Pressure Dependence of Laser-Induced Fluorescence from Acetone,” Applied Optics 36-15 (1997), 3271.CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2000

Authors and Affiliations

  • Hanson R. 
    • 1
  • Baer D. 
    • 1
  • Morris C. 
    • 1
  • Thurber M. 
    • 1
  • Furlong E. 
    • 1
  • Wehe S. 
    • 1
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations