Advertisement

Journal of Visualization

, Volume 2, Issue 3–4, pp 229–244 | Cite as

Particle image velocimetry in aerodynamics: Technology and applications in wind tunnels

  • Kompenhans J. Email author
  • Raffel M. 
  • Dieterle L. 
  • Dewhirst T. 
  • Vollmers H. 
  • Ehrenfried K. 
  • Willert C. 
  • Pengel K. 
  • Kähler C. 
  • Schröder A. 
  • Ronneberger O. 
Article

Abstract

Particle image velocimetry (PIV) is increasingly used for aerodynamic research and development. The PIV technique allows the recording of a complete flow velocity field in a plane of the flow within a few microseconds. Thus, it provides information about unsteady flow fields, which is difficult to obtain with other experimental techniques. The short acquisition time and fast availability of data reduce the operational time, and hence cost, in large scale test facilities. Technical progress made in the last years allowed DLR to develop a reliable, modular PIV system for use in industrial wind tunnels. The features of this system are summarized and results of recent PIV applications are presented.

Keywords

particle image velocimetry PIV industrial wind tunnels aerodynamics unsteady flow fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. J., “Particle-imaging techniques for experimental fluid mechanics,” Ann. Rev. Fluid Mech., 23 (1991),. 261–304.CrossRefGoogle Scholar
  2. De Gregorio, F., Kompenhans, J., Willert, C., Bretthauer and B. Raffel, M., “Investigation of unsteady flow fields on high speed propellers by means of the particle image velocimetry technique,” Proc. 8th International Symposium on Flow Visualization, G. M. Carlomagno and I. Grant eds, ISBN 0953399109, Sorrento (1998).Google Scholar
  3. Dieterle, L. and Peiter, U., “ELAC-1: Experimental Investigation of Vortex Structures Using PIV,” Proc. Ann. Sci. Conf. GAMM (Gesellschaft für Angewandte Mathematik und Mechanik), Bremen (1998).Google Scholar
  4. Dieterle, L., Kompenhans, J., Peiter, U. and Pengel, K., “Flow Field Investigations on a Large Delta Wing Using Laser Sheet Imaging and Particle Image Velocimetry,” 8th Int. Symp. Flow Visualization, Sorrento (1998).Google Scholar
  5. Echols, W. H. and Young, J. A., “Studies of Portable Air-Operated Aerosol Generators,” NLR (Naval Research Laboratory) Report 5929, Washington (1963).Google Scholar
  6. Hinsch, K.D., “Particle image velocimetry,” in Speckle Metrology, ed. R.S. Sirohi, (1993), 235–323, Marcel Dekker, New York.Google Scholar
  7. Kähler, C. J., Adrian, R. J. and Willert, C. E., “Turbulent boundary layer investigations with conventional- and stereoscopic particle image velocimetry,” Proc. 9th Intl. Symposium on Appl. of Laser Techniques to Fluid Mechanics, Lisbon (1998), paper 11.1.Google Scholar
  8. Neuwerth, G., Peiter, U., Decker, F. and Jacob, D., “Reynolds Number Effects on the Low-Speed Aerodynamics of the Hypersonic Configuration ELAC-1,” AIAA 8th Int. Space Planes Hypersonic Sys. Techn. Conf., Norfolk (1998), Paper No. AIAA-98-1578.Google Scholar
  9. Raffel, M. and Kost, F., “Investigation of aerodynamic effects of coolant ejection at the trailing edge of a turbine blade model by PIV and pressure measurements,” Exp. in Fluids, 24, (1998) 447–461.CrossRefGoogle Scholar
  10. Raffel, M., Willert, C. and Kompenhans, J., “Particle image velocimetry-A practical Guide,” (1998a), Springer Verlag, Berlin.Google Scholar
  11. Raffel, M., Willert, C., Kompenhans, J., Ehrenfried, K., Lehmann, G. and Pengel, K., “Feasibility and capabilities of particle image velocimetry (PIV) for large scale model rotor testing,” Heli Japan 98, April 21-23, Gifu, Japan (1998b), paper T3-1.Google Scholar
  12. Raffel, M., De Gregorio, F., Pengel, K., Willert, C., Kähler, C., Ehrenfried, K. and Kompenhans, J., “Instantaneous flow field measurements for propeller aircraft and rotorcarft research,” Proc. 9th Intl. Symposium on Appl. of Laser Techniques to Fluid Mechanics, Lisbon (1998c), paper 19.6.Google Scholar
  13. Ronneberger, O., Raffel, M. and Kompenhans, J., “Advanced evaluation algorithms for standard and dual plane particle image velocimetry,” Proc. 9th Intl. Symposium on Appl. of Laser Techniques to Fluid Mechanics, Lisbon (1998), paper 10.1.Google Scholar
  14. Vogt, A., Baumann, P., Gharib, M. and Kompenhans, J., “Investigations of a wing tip vortex in air by means of DPIV,” Proc. 19th AIAA Advanced Measurement and Ground Testing Technology, 17–20 June 1996, New Orleans, LA. (1996), paper AIAA 96-2254.Google Scholar
  15. Willert, C. E. and Gharib, M., “Digital Particle Image Velocimetry,” Exp in Fluids, 10 (1991), 181–183.CrossRefGoogle Scholar
  16. Willert, C., Raffel, M., Kompenhans, J., Stasicki, B. and Kähler, C., “Recent applications of particle image velocimetry in aerodynamic research,” Flow Meas. Instrum., 7 (1996), 247–256.CrossRefGoogle Scholar
  17. Willert, C., “Stereoscopic digital particle image velocimetry for application in wind tunnel flows,” Meas. Sci. and Techn., 8, 12 (1997), 1465–1479.CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2000

Authors and Affiliations

  • Kompenhans J. 
    • 1
    Email author
  • Raffel M. 
    • 1
  • Dieterle L. 
    • 1
  • Dewhirst T. 
    • 1
  • Vollmers H. 
    • 1
  • Ehrenfried K. 
    • 1
  • Willert C. 
    • 2
  • Pengel K. 
    • 3
  • Kähler C. 
    • 1
  • Schröder A. 
    • 1
  • Ronneberger O. 
    • 1
  1. 1.Institut für StrömungsmechanikDeutsches Zentrum für Luft- und Raumfahrt (DLR)GöttingenGermany
  2. 2.Institut für AntriebstechnikDLRKölnGermany
  3. 3.Deutsch-Niederländischer Windkanal (DNW)EmmeloordThe Netherlands

Personalised recommendations