Journal of Physiology and Biochemistry

, Volume 65, Issue 3, pp 315–328 | Cite as

Dietary fructooligosaccharides and potential benefits on health

  • M. Sabater-Molina
  • E. Larqué
  • F. Torrella
  • S. Zamora
Minireviews

Abstract

Fructooligosaccharides (FOS) are oligosaccharides that occur naturally in plants such as onion, chicory, garlic, asparagus, banana, artichoke, among many others. They are composed of linear chains of fructose units, linked by β (2-1) bonds. The number of fructose units ranges from 2 to 60 and often terminate in a glucose unit. Dietary FOS are not hydrolyzed by small intestinal glycosidases and reach the cecum structurally unchanged. There, they are metabolized by the intestinal microflora to form short-chain carboxylic acids, L -lactate, CO2, hydrogen and other metabolites. FOS have a number of interesting properties, including a low sweetness intensity; they are also calorie free, non-cariogenic and are considered as soluble dietary fibre. Furthermore, FOS have important beneficial physiological effects such as low carcinogenicity, a prebiotic effect, improved mineral absorption and decreased levels of serum cholesterol, triacylglycerols and phospholipids. Currently FOS are increasingly included in food products and infant formulas due to their prebiotic effect stimulate the growth of nonpathogenic intestinal microflora. Their consumption increases fecal bolus and the frequency of depositions, while a dose of 4–15 g/day given to healthy subjects will reduce constipation, considered one of the growing problems of modern society, and newborns during the first months of life.

Key words

Fructooligosaccharides Prebiotic Infant formulas Human milk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baró, L., Jiménez, J., Martínez-Ferez, and Boza, J.J. (2001): Bioactive compounds derived from human milk.Ars Pharmaceutica,42, 21–28.Google Scholar
  2. 2.
    Blaut, M. (2002): Relationship of prebiotics and food to intestinal microflora.Eur J Nutr,41, 11–16,CrossRefGoogle Scholar
  3. 3.
    Boehm, G., Jelinek, J., Knol, J., M’Rabet, L., Stahl, B., Vos, P. and Garssen, J. (2004): Prebiotics and Immune Responses.J Pediat Gastroenterol Nutr,39, 772–773.CrossRefGoogle Scholar
  4. 4.
    Boehm, G., Jelinek, J., Stahl, B., van Laere, K., Knol, J., Fanaro, S., Moro, G. and Vigi, V. (2004): Prebiotics in Infant Formulas.J Clin Gastroenterol,38, 76–79.CrossRefGoogle Scholar
  5. 5.
    Boehm, G. and Stahl, B. (2007): Oligosaccharides from Milk.J Nutr,137, 847S-849.PubMedGoogle Scholar
  6. 6.
    Bornet, F.R.J. (1994): Undigestible sugars in food products.Am J Clin Nutr,59, 763S-769S.PubMedGoogle Scholar
  7. 7.
    Bornet, F.R., Brouns, F., Tashiro, Y. and Duvillier, V. (2002): Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications.Digestive and Liver Disease,34, 111–120.CrossRefGoogle Scholar
  8. 8.
    Bourlioux, P., Koletzko, B., Guarner, F., and Braesco, V. (2003): The intestine and its microflore are partners for the protection of the host: report on the Danone Symposium “The intelligent intestine” Paris.78, 675–683.Google Scholar
  9. 9.
    Brandt, L. (2001): Prebiotics enhance gut health.Prepared Foods,170, 7–10.Google Scholar
  10. 10.
    Carlson, S.E. (1985): N-acetylneuraminic acid concentrations in human milk oligosaccharides and glycoproteins during lactation.Am J Clin Nutr,41, 720–726.PubMedGoogle Scholar
  11. 11.
    Ciucanu, I. and Kerek, F. (1984): A simple and rapid method for the permethylation of carbohydrates.Carbohydr Res,131, 209–217.CrossRefGoogle Scholar
  12. 12.
    Collins, F. and Chandorkar, K.R. Thin-layer chromatography of fructo-oligosaccharides.J Chromatography,56, 167, 1971.CrossRefGoogle Scholar
  13. 13.
    Conway, P.L. (2001): Prebiotics and human health: the state of the art and future perspectives.Scand J Nutr,45, 13–21.Google Scholar
  14. 14.
    Crittenden, R.G. and Playne, M.J. (1996): Production, properties and applications of foodgrade oligosaccharides.Trends in Food Science and Technology,7, 361.CrossRefGoogle Scholar
  15. 15.
    Daubioul, C., De Wispelaere, L., Taper, H. and Delzenne, N. (2000): Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats.J Nutr,130, 1314–1319.PubMedGoogle Scholar
  16. 16.
    Daubioul, C., Rousseau, N., Demeure, R., Gallez, B., Taper, H., Declerck, B. and Delzenne, N. (2002): tary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats.J Nutr,132, 967–073.PubMedGoogle Scholar
  17. 17.
    Delzenne, N.M. (2003): Oligosaccharides: state of the art.Proc Nutr Soc,62, 177–182.CrossRefPubMedGoogle Scholar
  18. 18.
    Delzenne, N., Aertssens, J., Verplaetse, H., Roccaro, M. and Roberfroid, M. (1995): Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat.Life Sciences,57, 1579–1587.CrossRefPubMedGoogle Scholar
  19. 19.
    Demigné, C., Rémésy, C, and Morand, C. (1999): Short chain fatty acids. In G Gibson and M Roberfroid, eds. Colonic Microbiota, Nutrition and Health. Dordrecht, The Netherlands: Kluwer Academic Publishers, 55–69.Google Scholar
  20. 20.
    Engfer, M.B., Stahl, B., Finke, B., Sawatzki, G. and Daniel, H. (2000): Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract.Am J Clin Nutr,71, 1589–1596.PubMedGoogle Scholar
  21. 21.
    Englyst, H.N., Quigley, M.E. and Hudson, G.J. (1994): Determination of dietary fiber as nonstarch polysaccharides with gas-liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars.Analyst,119, 1497–1509.CrossRefPubMedGoogle Scholar
  22. 22.
    Franck, A. (2002): Technological functionality of inulin and oligofructose.Br J Nutr,87, 287–291.CrossRefGoogle Scholar
  23. 23.
    Gelders, G.G, Bijnens, L., Loosveld, A.M., Vidts, A. and Delcour, J.A. (2003): Fractionation of starch hydrolysates into dextrins with narrow molecular mass distribution and their detection by high-performance anion-exchange chromatography with pulsed amperometric detection.J Chromatogr A, 992, 75–83.CrossRefGoogle Scholar
  24. 24.
    Gibson, G.R. (1998): Dietary modulation of the human gut microflora using prebiotics.Brit J Nut, 80, 209–212.Google Scholar
  25. 25.
    Gibson, G.R. (1999): Dietary Modulation of the Human Gut Microflora Using the Prebiotics Oligofructose and Inulin.J Nutr,129, 1438.Google Scholar
  26. 26.
    Gibson, G.R., Probert, H.M., Van Loo, J.A.E. and Roberfroid, M.B. (2004): Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics.Nutr Res Rev,17, 259.CrossRefPubMedGoogle Scholar
  27. 27.
    Gibson, G.R. and Roberfroid, M.B. (1995): Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics.J Nutr,125, 1401–1412.PubMedGoogle Scholar
  28. 28.
    Grizar, D. and Barthomeuf, C. (1999): Nondigestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health.Reprod Nutr Dev,39, 563–588.CrossRefGoogle Scholar
  29. 29.
    Gudiel-Urbano, M. and Goñi, I. (2001): Human milk oligosaccharides. The rule in the health and development of the infants.Arch Latinoam Nutr,51, 332–339.PubMedGoogle Scholar
  30. 30.
    Hond, E.D., Geypens, B. and Ghoos, Y. (2000): Effect of high performance chicory inulin on constipation.Nutrition Research,20, 731–736.CrossRefGoogle Scholar
  31. 31.
    Howard, M.D., Gordon, D.T., Garleb, K.A. and Kerley, M.S. (1995): Dietary Fructooligosaccharide, Xylooligosaccharide and Gum Arabic Have Variable Effects on Cecal and Colonic Microbiota and Epithelial Cell Proliferation in Mice and Rats.J Nutr,125, 2604–2609.PubMedGoogle Scholar
  32. 32.
    Howard, M.D, Gordon, L., Pace, K., Garleb, and Kerley, M. (1995): Effects of dietary supplementation with fructooligosaccharides on colonic microbiota populations and epithelial cell proliferation in neonatal pigs.J Pediatric Gastroenterol Nutr,21, 297–303.CrossRefGoogle Scholar
  33. 33.
    Jenkins, D.J.A., Kendall, C.W.C. and Vuksan, V. (1999): Inulin, Oligofructose and Intestinal Function.J Nutr,129, 1431.Google Scholar
  34. 34.
    Kabel, M.A., Schols, H.A. and Voragen, A.G.J. (2002): Complex xylo-oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery’s spent grain.Carbohydr Polym,50, 191–200.CrossRefGoogle Scholar
  35. 35.
    Kaur, N. and Gupta, A.K. (2002): Applications of inulin and oligofructose in health and nutrition.J Biosci,27, 703–714.CrossRefPubMedGoogle Scholar
  36. 36.
    Kelly, G. (2009): Inulin-Type Prebiotics — A Review: Part 1.Altern Med Rev,13, 315–329.Google Scholar
  37. 37.
    Kelly, G. (2009): Inulin-Type Prebiotics: A Review (Part 2).Altern Med Rev,14, 36–55.PubMedGoogle Scholar
  38. 38.
    Kleessen, B., Sykura, B., Zunft, H.J. and Blaut, M. (1997): Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons.Am J Clin Nutr,65, 1397–1402.PubMedGoogle Scholar
  39. 39.
    Knol, J., Scholtens, P., Kafka, C., Steenbakkers, J., Gro, S., Helm, K., Klarczyk, M., Schopfer, H., Bockler, H.M. and Wells, J. (2005): Colon Microflora in Infants Fed Formula with Galactoand Fructo-Oligosaccharides: More Like Breast-Fed Infants.J Pediatric Gastroenterol Nutr,40, 36–42.CrossRefGoogle Scholar
  40. 40.
    Kok, N., Taper, H. and Delzenne, N. (1998): Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats.J App Toxicol,18, 47–53.CrossRefGoogle Scholar
  41. 41.
    Kulkarni, N. and Reddy, B.S. (1994): Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial beta-glucuronidase.Proc Soc Exp Biol Med,207, 278–283.PubMedGoogle Scholar
  42. 42.
    Kunz, C., Rudloff, S., Baier, W., Klein, N. and Strobel, S. (2000): Oligosaccharides in human milk: Structural, Functional, and Metabolic Aspects.Ann Rev Nut,20, 699–722.CrossRefGoogle Scholar
  43. 43.
    Larqué, E., Sabater Molina, M. and Zamora, S. (2007): Biological significance of dietary polyamines.Nutrition,23, 87–95.CrossRefPubMedGoogle Scholar
  44. 44.
    McVeagh, P. and Miller, J.B. (1997): Human milk oligosaccharides: only the breast.J Paediatr Child Health, 33, 281–286.CrossRefPubMedGoogle Scholar
  45. 45.
    Miller, J.B., Bull, S., Miller, J. and McVeagh, P. (1994): The oligosaccharide composition of human milk: temporal and individual variations in monosaccharide components.J Pediatric Gastroenterol Nut,19, 371–376.CrossRefGoogle Scholar
  46. 46.
    Miller, T. and Wolin, L. (1996): Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora.Appl Environ Microbiol,62, 1589–1592.PubMedGoogle Scholar
  47. 47.
    Moro, G., Minoli, I., Mosca, M., Fanaro, S., elinek, J., Stahl, B. and Boehm, G. (2002): Dosage-Related Bifidogenic Effects of Galactoand Fructooligosaccharides in Formula-Fed Term Infants.J Pediatric Gastroenterology and Nutrition,34, 291–295.CrossRefGoogle Scholar
  48. 48.
    Moro, G., Arslanoglu, S., Stahl, B., Jelinek, J., Wahn, U. and Boehm, G. (2006): A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age.Arch Dis Child,91, 814–819.CrossRefPubMedGoogle Scholar
  49. 49.
    Murphy, O. (2001): Non-polyol low-digestible carbohydrates: food applications and functional benefits.Brit J Nutr,1, 53.Google Scholar
  50. 50.
    Mussatto, S.I. and Mancilha, I.M. (2007): Nondigestible oligosaccharides:A review.Carbohydrate Polymers,68, 597.CrossRefGoogle Scholar
  51. 51.
    Mutter, M., Renard, C.B.G., Schols, H.A. and Voragen, A.G.J. (1998): Mode of action of RGhydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase.Carbohydrate Research,311, 155–164.CrossRefPubMedGoogle Scholar
  52. 52.
    Newburg, D.S. (1997): Do the binding properties of oligosaccharides in milk protect human infants from gastrointestinal bacteria?J Nutr,127, 980S.Google Scholar
  53. 53.
    Noack, J., Dongowski, G., Hartmann, L. and Blaut, M. (2000): The Human Gut Bacteria Bacteroides thetaiotaomicron and Fusobacterium varium Produce Putrescine and Spermidine in Cecum of Pectin-Fed Gnotobiotic Rats.J Nutr,130, 1225–1231,.PubMedGoogle Scholar
  54. 54.
    Ohta, A., Ohtsuki, M., Baba, S., Adachi, T., Sakata, T. and Sakaguchi, E. (1995): Calcium and Magnesium Absorption from the Colon and Rectum Are Increased in Rats Fed Fructooligosaccharides.J Nutr,125, 2417–2424.PubMedGoogle Scholar
  55. 55.
    Reddy, B.S. (1999): Possible Mechanisms by Which Pro- and Prebiotics Influence Colon Carcinogenesis and Tumor Growth.J Nutr,129, 1478.Google Scholar
  56. 56.
    Rivero-Urgell, M. and Santamaria-Orleans, A. (2001): Oligosaccharides: application in infant food.Early Human Development,65, S43-S52.CrossRefPubMedGoogle Scholar
  57. 57.
    Roberfroid, M. B. and Delzenne, N. M. (1998): Dietary fructans.Ann Rev Nutr,18, 117–143.CrossRefGoogle Scholar
  58. 58.
    Sabater-Molina, M., Larqué, E., Torrella, F., Plaza, F., Lozano, M.T., Muñoz, A. and Zamora, S. (2009): Effects of dietary polyamines at physiological doses in early weaned piglets.Nutrition. (in press).Google Scholar
  59. 59.
    Sabharwal, H., Sjöblad, S. and Lundblad, A. (1991): Affinity chromatographic identification and quantitation of blood group A-active oligosaccharides in human milk and feces of breast-fed infants.J Pediatric Gastroenterol Nut,12, 474–479.CrossRefGoogle Scholar
  60. 60.
    Salminen, S., Bouley, C., Boutron-Ruault, M.C., Cummings, J.H., Franck, A., Gibson, G.R., Isolauri, E., Moreau, M.C., Roberfroid, M. and Rowland, I. (1998): Functional food science and gastrointestinal physiology and function.Brit J Nut,80, 147–171.CrossRefGoogle Scholar
  61. 61.
    Scholz-Ahrens, K.E., Ade, P., Marten, B., Weber, P., Timm, W., il, Y., Gluer, C.C. and Schrezenmeir, J. (2007): Prebiotics, Probiotics, and Synbiotics Affect Mineral Absorption, Bone Mineral Content, and Bone Structure.J Nutr,137, 838S-8846.PubMedGoogle Scholar
  62. 62.
    Scholz-Ahrens, K.E. and Schrezenmeir, J. (2007): Inulin and Oligofructose and Mineral Metabolism: The Evidence from Animal Trials.J Nutr,137, 2513S-2523.PubMedGoogle Scholar
  63. 63.
    Scholz-Ahrens, K., Schaafsma, G., Van der Heuvel, E. and Schrezenmeir, J. (2001): Efffects of prebiotics on mineral metabolism.Am J Clin Nutr,73, 459S-464S.PubMedGoogle Scholar
  64. 64.
    Seifert, S. and Watzl, B. (2007): Inulin and Oligofructose: Review of Experimental Data on Immune Modulation.J Nutr,137, 2563S-2567.PubMedGoogle Scholar
  65. 65.
    Swennen, K., ourtin, K.M. and elcour, J.A. (2006): Non-digestible Oligosaccharides with Prebiotic Properties.Critical Reviews in Food Science and Nutrition,46, 471.CrossRefGoogle Scholar
  66. 66.
    Trowell H. Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases.Am J Clin Nutr,29, 417–427, 1976.PubMedGoogle Scholar
  67. 67.
    Wargovich, M.J., Chen, C.D., Jimenez, A., Steele, V.E., Velasco, M., Stephens, L.C., Price, R., Gray, K., and Kelloff, G.J. (1996): Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat.Cancer Epidemiol Biomarkers Prev,5, 355–360.PubMedGoogle Scholar
  68. 68.
    Wargowich, M.J., Eng, V.W.S. and Newmark, H. (1984): Ca inhibits the damaging and compensatory proliferating effect of fatty acids on mouse colon epithelium.Cancer Lett,23, 253–258.CrossRefGoogle Scholar
  69. 69.
    White, C.A., Corran, P.H. and Kennedy, J.F. (1980): Analysis of underivatised D-glucooligosaccharides (d.p. 2–20) by high-pressure liquid chromatography.Carbohydr Res,87, 165–173.CrossRefGoogle Scholar
  70. 70.
    Yun, J.W. (1996): Fructooligosaccharides— Occurrence, preparation, and application.Enzyme and Microbial Technology,19, 107–117.CrossRefGoogle Scholar

Copyright information

© Universidad de Navarra 2009

Authors and Affiliations

  • M. Sabater-Molina
    • 1
  • E. Larqué
    • 1
  • F. Torrella
    • 2
  • S. Zamora
    • 1
  1. 1.Department of Physiology, Faculty of BiologyUniversity of MurciaSpain
  2. 2.Department of Microbiology, Faculty of BiologyUniversity of MurciaSpain

Personalised recommendations