Symbiosis

, Volume 48, Issue 1–3, pp 1–17 | Cite as

The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems

  • M. B. Peoples
  • J. Brockwell
  • D. F. Herridge
  • I. J. Rochester
  • B. J. R. Alves
  • S. Urquiaga
  • R. M. Boddey
  • F. D. Dakora
  • S. Bhattarai
  • S. L. Maskey
  • C. Sampet
  • B. Rerkasem
  • D. F. Khan
  • H. Hauggaard-Nielsen
  • E. S. Jensen
Review Article

Abstract

Data collated from around the world indicate that, for every tonne of shoot dry matter produced by crop legumes, the symbiotic relationship with rhizobia is responsible for fixing, on average on a whole plant basis (shoots and nodulated roots), the equivalent of 30–40 kg of nitrogen (N). Consequently, factors that directly influence legume growth (e.g. water and nutrient availability, disease incidence and pests) tend to be the main determinants of the amounts of N2 fixed. However, practices that either limit the presence of effective rhizobia in the soil (no inoculation, poor inoculant quality), increase soil concentrations of nitrate (excessive tillage, extended fallows, fertilizer N), or enhance competition for soil mineral N (intercropping legumes with cereals) can also be critical. Much of the N2 fixed by the legume is usually removed at harvest in high-protein seed so that the net residual contributions of fixed N to agricultural soils after the harvest of legumegrain may be relatively small.Nonetheless, the inclusion of legumes in a cropping sequence generally improves the productivity of following crops. Whilesome of these rotational effects may be associated with improvements in availability of N in soils, factors unrelated to N also play an important role. Recent results suggest that one such non-N benefit may be due to the impact on soil biology of hydrogenemitted from nodules as a by-product of N2, fixation.

Keywords

Biological nitrogen fixation grain legumes rhizobia rotations improvedcrop yields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adjei-Nsiah, S., Kuyper, T.W., Leeuwis, C., Abekoe, M.K., Cobbinah, J., Sakyi-Dawson, O., and Giller, K.E. 2008. Farmers’ agronomic and social evaluation of productivity, yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop.Nutrient Cycling in Agroecosystems 80: 199–209.CrossRefGoogle Scholar
  2. Adu-Gyamfi, J.J., Myaka, F.A., Sakala, W.D., Odgaard, R., Vesterager, J.M., and Høgh-Jensen, H. 2007. Biological nitrogen fixation and nitrogen and phosphorus budgets in fanner-managed intercrops of maize-pigeonpea in semi-arid southern and eastern Africa.Plant and Soil 295: 127–136.CrossRefGoogle Scholar
  3. Arp, D.J. 1992. Hydrogen recycling in symbiotic bacteria. In:Biological Nitrogen Fixation. Stacey, G., Burris, R.H., and Evans, H.J., eds. Chapman and Hall, New York, pp. 432–460.Google Scholar
  4. Aslam, M., Mahmood, L.A., Ahmad, S., Peoples, M.B., and Herridge, D.F. 1997. Surveys of chickpea N2 fixation in the Potohar and Thal areas of the Punjab, Pakistan. In:Extending Nitrogen Fixation Research to Farmers’ Fields. Rupela, O.P., Johansen, C., and Herridge, D.F.,eds. ICRISAT, India, pp. 353–360.Google Scholar
  5. Aslam, M., Mahmood, L.A., Peoples, M.B., Schwenke, G.D., and Herridge, D.F. 2003. Contribution of chickpea nitrogen fixation to increased wheat production and soil organic fertility in rainfed cropping.Biology and Fertiity of Soils 38: 59–64.CrossRefGoogle Scholar
  6. Beck, D.P., Wery, J., Saxena, M.C., and Ayadi, A. 1991. Dinitrogen fixation and nitrogen balance in cool-season food legumes.Agronomy Journal 83: 334–341.CrossRefGoogle Scholar
  7. Bergersen, F.J., Turner, G.L., Gault, R.R., Peoples, M.B., Morthorpe, L.J., and Brockwell, J. 1992. Contributions of nitrogen in soybean crop residues to subsequent crops and to soil.Australian Journal of Agricultural Research 43: 155–169.CrossRefGoogle Scholar
  8. Bhattari, S., Maskey, S.L., and Kama, R.L. 1997. On-farm experiments on rhizobial inoculants in Nepal. In:Extending Nitrogen Fixation Research to Farmers’ Fields. Rupela, O.P., Johansen, C., and Herridge, D.F., eds. ICRISAT, India, pp. 235–242.Google Scholar
  9. Boddey, R.M, Urquiaga, S., and Neves, M.C.P. 1990. Quantification of the contribution of N2 fixation to field grown grain legumes — a strategy for the practical application of the15N isotope dilution technique.Soil Biology & Biochemistry 22: 649–655.CrossRefGoogle Scholar
  10. Bremer, E. and van Kessel, C. 1992a. Seasonal microbial biomass dynamics after addition of lentil and wheat residues.Soil Science Society of America Journal 56: 1141–1146.CrossRefGoogle Scholar
  11. Bremer, E. andvan Kessel, C. 1992b. Plant-available nitrogen from lentil and wheat residues during a subsequent growing season.Soil Science Society of merica Journal 56: 1155–1160.Google Scholar
  12. Brockwell, J. 1963. Accuracy of a plant-infection technique for counting populations of Rhizobium trifolii.Applied Microbiology 11: 377–383.PubMedGoogle Scholar
  13. Brockwell, J., Andrews, J.A., Gault, R.R., Gemell, L.G., Griffith, G.W., Herridge, D.F., Holland, I.F., Karsono, S., Peoples, M.B., Roughley, R.J., Thompson, J.A., Thompson, l.A., and Troedson, R.J. 1991. Erratic nodulation and nitrogen fixation in fieldgrown pigeonpea [Cajanus cajan (L.) Millsp.].Australian Journal of Experimental Agriculture 31: 653–661.CrossRefGoogle Scholar
  14. Brockwell, J. and Bottomley, P.J. 1995. Recent advances in inoculant technology and prospects for the future.Soil Biology & Biochemistry 27: 683–697.CrossRefGoogle Scholar
  15. Brockwell, J. and Evans, C.M. 2005. Contrasting profiles of persistence in vertosols for two strains of Bradyrhizobium japonicum used in soybean inocula. In:Proceeding of the 14th Australian Nitrogen Fixation Conference. Brockwell, J., ed. Australian Society for Nitrogen Fixation, University of Western Sydney, Richmond, NSW, Australia.Google Scholar
  16. Chalk, P.M. 1998. Dynamics of biologically fixed N in legumecereal rotations: a review.Australian Journal of Agricultural Research 49: 303–316.CrossRefGoogle Scholar
  17. Crews, T.E. and Peoples, M.B. 2004. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs.Agriculture, Ecosystems and Environment 102: 279–297.CrossRefGoogle Scholar
  18. Crews, T.E. and Peoples, M.B. 2005. Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review.Nutrient Cycling in Agroecosystems 72: 101–120.CrossRefGoogle Scholar
  19. Dean, C.A., Sun, W., Dong, Z., and Caldwell, C.D. 2006. Soybean nodule hydrogen metabolism affects soil hydrogen uptake and the growth of rotation crops.Canadian Journal of Plant Science 86: 1355–1359.Google Scholar
  20. Dong, Z., Wu, L., Kettlewell, B., Caldwell, C.D., and Layzell, D.B. 2003. H2 fertilization of soils — is this a benefit of legumes in rotation?Plant Cell and Environment 26: 1875–1879.CrossRefGoogle Scholar
  21. Doughton, J.A., Vallis, I., and Saffina, P.G. 1993. Nitrogen fixation in chickpea 1. Influence of prior cropping or fallow, nitrogen fertilizer and tillage.Australian Journal of Agricultural Research 44: 1403–1413.CrossRefGoogle Scholar
  22. Evans, H.J., Russell, S.A., Hanus, F.J., and Ruiz-Argueso, T. 1988. The importance of hydrogen recycling in nitrogen fixation by legumes. In:World Crops: Cool Season Food Legumes. Summerfield, R.J., ed. Kluwer Academic Publishers, Boston, MA, USA, pp. 777–791.Google Scholar
  23. Evans, J., McNeill, A.M., Unkovich, M.J., Fettell, N.A., and Heenan, D.P. 2001. Net nitrogen balances for cool-season grain legume crops and contributions to wheat nitrogen uptake: a review.Australian Journal of Experimental Agriculture 41: 347–359.CrossRefGoogle Scholar
  24. Evans, J., Scott, G., Lemerle, D., Kaiser, A., Orchard, B., Murray, G.M., and Armstrong, E.L. 2003. Impact of legume ‘break’ crops on the residual amount and distribution of soil mineral nitrogen.Australian Journal of Agricultural Research 54: 763–776.CrossRefGoogle Scholar
  25. FAO. 2008. FAOSTAT Agricultural Database, http://faostat.fao.org/Google Scholar
  26. Fillery, I.R.P. 2001. The fate of biologically fixed nitrogen in legume-based dryland farming systems: a review.Australian Journal of Experimental Agriculture 41: 361–381.CrossRefGoogle Scholar
  27. Fyson, A. and Oaks, A. 1990. Growth promotion of maize by legume soils.Plant and Soil 122: 259–266.CrossRefGoogle Scholar
  28. Gibson, A.H., Dreyfus, B.L., Lawn, R.J., Sprent, J.I., and Turner, G.L. 1981. Host and environmental factors affecting hydrogen evolution and uptake. In:Current Perspectives in Nitrogen Fixation. Gibson, A.H. and Newton, W.E., eds. Australian Academy of Science, Canberra, Australia, pp. 373.Google Scholar
  29. Giller, K.E. 2001.Nitrogen Fixation in Tropical Cropping Systems, 2nd Edition. CAB International, Wallingford, UK.Google Scholar
  30. Giller, K.E. and Cadisch, G. 1995. Future benefits from biological nitrogen fixation: an ecological approach to agriculture.Plant and Soil 174: 255–277.CrossRefGoogle Scholar
  31. Green, C.J. and Blackmer, A.M. 1995. Residue decomposition effects on nitrogen availability to corn grown after corn or soybean.Soil Science Society of America Journal 59: 1065–1070.Google Scholar
  32. Hafeez, F.Y., Shah, N.H., and Malik, K.A. 2000. Field evaluation of lentil cultivars inoculated withRhizobium leguminosarum bv.viciae strains for nitrogen fixation using nitrogen-15 isotope dilution.Biology and Fertility of Soils 31: 65–69.CrossRefGoogle Scholar
  33. Hardarson, G. and Atkins, C. 2003. Optimising biological N2 fixation by legumes in farming systems.Plant and Soil 252: 41–54.CrossRefGoogle Scholar
  34. Harris, G.H., Hesterman, O.B., Paul, E.A., Peters, S.E., and Janke, R.R. 1994. Fate of legume and fertilizer nitrogen-15 in a longterm cropping systems experiment.Agronomy Journal 86: 910–915.CrossRefGoogle Scholar
  35. Hauggaard-Nielsen, H., Ambus, P., and Jensen, E.S. 2003. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley.Nutrient Cycling in Agroecosytems 65: 289–300.CrossRefGoogle Scholar
  36. Hegde, S.V. 1994. Population of cowpea rhizobia in farmers’ fields in southern Karnataka: influence of cropping system, locations, and N-level. In:Linking Biological Nitrogen Fixation Research in Asia. Rupela, O.P., Kumar Rao, J.V.D.K., Wani, S.P., and Johansen, c., eds. ICRISAT, India, pp. 47–52.Google Scholar
  37. Herridge, D.F. 2008. Inoculation technology for legumes. In:Nitrogen Fixation: Origins, Applications, and Research Progress. Volume 7. Nitrogen-fixing Leguminous Symbioses. Dilworth, M.J., James, E.K., Sprent, J.I., and Newton, W.E., eds. Springer, The Netherlands, pp. 77–115.Google Scholar
  38. Herridge, D.F. and Danso, S.K.A. 1995. Enhancing crop legume N2 fixation through selection and breeding.Plant and Soil 174: 51–82.CrossRefGoogle Scholar
  39. Herridge, D.F. and Holland, I.F. 1993. Low nodulation and N2 fixation limits yield of pigeonpea on alkaline vertisols of northern NSW: effect of iron, rhizobia and plant genotype.Australian Journal of Agricultural Research 44: 137–149.CrossRefGoogle Scholar
  40. Herridge, D.F., Marcellos, H., Felton, W.L., Turner, G.L., and Peoples, M.B. 1995. Chickpea increases soil-N fertility in cereal systems through nitrate sparing and N2 fixation.Soil Biology & Biochemistry 27: 545–551.CrossRefGoogle Scholar
  41. Herridge, D.F., Peoples, M.B., and Boddey, R.M. 2008. Marschner Review: Global inputs of biological nitrogen fixation in agricultural systems.Plant and Soil 311: 1–18.CrossRefGoogle Scholar
  42. Herridge, D.F., Robertson, M.J., Cocks, B., Peoples, M.B., Holland, J.F., and Heuke, L. 2005. Low nodulation and nitrogen fixation of mungbean reduce biomass and grain yields.Australian Journal of Experimental Agriculture 45: 269–277.CrossRefGoogle Scholar
  43. Herridge, D.F., Roughley, R.J., and Brockwell, J. 1984. Effect of rhizobia and soil nitrate on the establishment and functioning of the soybean symbiosis in the field.Australian Journal of Agricultural Research 35: 149–161.CrossRefGoogle Scholar
  44. Hesterman, O.B., Russelle, M.P., Sheaffer, C.C., and Heiche, G.H. 1987. Nitrogen utilization from fertilizer and legume residues in legume-com rotations.Agronomy Journal 79: 726–731.CrossRefGoogle Scholar
  45. Hiep, N.H., Diep, C.N., and Herridge, D.F. 2002. Nitrogen fixation of soybean and groundnut in the Mekong Delta, Vietnam. In:lnoculants and Nitrogen Fixation of Legumes in Vietnam. Herridge, D., ed. ACIAR Proceedings 109e, ACIAR, Australia., pp. 10–18.Google Scholar
  46. Hoa, N.T.L., Thao, T.Y., Lieu, P., and Herridge, D.F. 2002. N2 fixation of groundnut in the eastern region of south Vietnam. In:lnoculants and Nitrogen Fixation of Legumes in Vietnam. Herridge, D., ed. ACIAR Proceedings 109e, ACIAR, Australia, pp. 19–28.Google Scholar
  47. Hocking, P.J. 2001. Organic acids exuded from roots in phosphorus uptake and aluminium tolerance of plants in acid soils.Advances in Agronomy 74: 63–97.CrossRefGoogle Scholar
  48. Holdensen, L., Hauggaard-Nielsen, H., and Jensen, E.S. 2007. Short-range spatial variability of soil δ15N natural abundance — effects on symbiotic N2-fixation estimates in pea.Plant and Soil 298: 265–272.CrossRefGoogle Scholar
  49. Howieson, J. and Ballard, R. 2004. Optimising the legume symbiosis in stressful and competitive environments within southern Australia — some contemporary thoughts.Soil Biology & Biochemistry 36: 1261–1273.CrossRefGoogle Scholar
  50. Hungria, M., Frachini, J.C., Campo, R.J., Crispino, C.C., Moraes, J.Z., Sibaldelli, R.N.R., Mendes, I.C., and Arihara, J. 2006. Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer to grain yield.Canadian Journal of Plant Science 86: 927–939.Google Scholar
  51. Hunt, S. and Layzell, D.B. 1993. Gas exchange of legume nodules and the regulation of nitrogenase activity.Annual Review of Plant Physiology and Molecular Biology 44: 483–511.CrossRefGoogle Scholar
  52. Jensen, C.R., Joemsgaard, B., Andersen, M.N., Christiansen, J.L., Morgensen, V.O., Friis, P., and Petersen, C.T. 2004. The effect of lupins as compared with peas and oats on the yield of the subsequent winter barley crop.European Journal of Agronomy 20: 405–418.CrossRefGoogle Scholar
  53. Jensen, E.S. 1994. Availability of nitrogen in15N-labelled mature pea residues to subsequent crops in the field.Soil Biology & Biochemistry 26: 465–472.CrossRefGoogle Scholar
  54. Jensen, E.S. 1996. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops.Plant and Soil 101 29–37.CrossRefGoogle Scholar
  55. Jensen, E.S. 1997.The Role of Grain Legume N 2 Fixation in the Nitrogen Cycling of Temperate Cropping Systems. D.Sc. Thesis. Risø National Laboratory.Google Scholar
  56. Jensen, E.S. and Hauggaard-Nielsen, H. 2003. How can increased use of biological N2 fixation in agriculture benefit the environment?Plant and Soil 252: 177–186.CrossRefGoogle Scholar
  57. Joshi, P.K. 1994. Field response of groundnut to Bradyrhizobium inoculation. In:Linking Biological Nitrogen Fixation Research in Asia. Rupela, O.P., Kumar Rao, J.V.D.K., Wani, S.P., and Johansen, C., eds. ICRISAT, India, pp. 29–35.Google Scholar
  58. Khan, D.F. 2000.Reconciling Effects of Legume N with Reference to the Role of the Nodulated Root. Ph.D. Thesis. Melbourne University, Victoria, Australia.Google Scholar
  59. Khan, D.F., Peoples, M.B., Chalk, P.M., and Herridge, D.F. 2002. Quantifying below-ground nitrogen of legumes. 2. A comparison of15N and non isotopic methods.Plant and Soil 239: 277–289.CrossRefGoogle Scholar
  60. Khan, D.F., Peoples, M.B., Schwenke, G.D., Felton, W.L., Chen, D., and Herridge, D.F. 2003. Effects of below-ground nitrogen on N balances of field-grown fababean, chickpea and barley.Australian Journal of Agricultural Research 54: 333–340.CrossRefGoogle Scholar
  61. Khanam, D., Rahman, H.H., and Hossain, A.K.M. 1994. Use of rhizobial inoculants: on-farm experience in Bangladesh. In:Linking Biological Nitrogen Fixation Research in Asia. Rupela, O.P., Kumar Rao, J.V.D.K., Wani, S.P., and Johansen, C., eds. ICRISAT, India, pp. 7–12.Google Scholar
  62. Khurana, A.L. and Dudeja, S.S. 1994. On-farm experience in the use of rhizobial inoculants on pigeonpea in India. In:Linking Biological Nitrogen Fixation Research in Asia. Rupela, O.P., Kumar Roo, J.V.D.K., Wani, S.P., and Johansen, C., eds. ICRISAT, India, pp. 36–41.Google Scholar
  63. Khurana, A.L., Namdeo, S.L., Patel, B.J., and Dudeja, S.S. 1997. On-farm experiments on rhizobial inoculants — problems and possible solutions. In:Extending Nitrogen Fixation Research to Farmers’ Fields. Rupela, O.P., Johansen, C., and Herridge, D.F., eds. ICRISAT, India, pp. 217–226.Google Scholar
  64. Kirkegaard, J., Christen, O., Krupinsky, J., and Layzell, D. 2008. Break crop benefits in temperate wheat production.Field Crops Research 107: 185–195.CrossRefGoogle Scholar
  65. Kurdali, F., Kalifa, K., and Al-Shamma, M. 1997. Cultivar differences in nitrogen assimilation, partitioning and mobilization in rain-fed grown lentil.Field Crops Research 54: 235–243.CrossRefGoogle Scholar
  66. Lesturgez, G., Poss, R., Hartmann, E., Bourdon, E., and Ratana-Anupap, S. 2004. Roots ofStylosanthes hamata create macropores in the compact layer of a sandy soil.Plant and Soil 260: 101–109.CrossRefGoogle Scholar
  67. Lupwayi, N.Z. and Kennedy, A.C. 2007. Grain legumes in Northern Great Plains: Impacts on selected biological soil processes.Agronomy Journal 99: 1700–1709.CrossRefGoogle Scholar
  68. Mahieu, S., Fustec, J., Faure, M., Corree-Hellou, G., and Grozat, Y. 2007. Comparison of two15N labeling methods for assessing nitrogen rhizodeposition of pea.Plant and Soil 295: 193–205.CrossRefGoogle Scholar
  69. Marshall, D.J., Bateman, J.D., and Brockwell, J. 1993. Validation of a serial-dilution, plant-infection test for enumeratingRhizobium leguminosarum bv.viciae and its application for counting rhizobia in acid soils.Soil Biology & Biochemistry 25: 261–268.CrossRefGoogle Scholar
  70. Maskey, S.L., Bhattarai, S., Peoples, M.B., and Herridge, D.F. 2001. On-farm measurements of nitrogen fixation by winter and summer legumes in the Hill and Terai regions of Nepal.Field Crops Research 70: 209–221.CrossRefGoogle Scholar
  71. McCallum, M.H., Kirkegaard, J.A., Green, T., Cresswell, H.P., Davies, S.L., Angus, J.F., and Peoples, M.B. 2004. Improved subsoil macro-porosity following perennial pastures.Australian Journal of Experimental Agriculture 44: 299–307.CrossRefGoogle Scholar
  72. McNeill, A.M. and Fillery, I.R.P. 2008. Field measurement of lupin belowground nitrogen accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate.Plant and Soil 302: 297–316.CrossRefGoogle Scholar
  73. Merrill, S.D., Tanaka, D.L., Krupinsky, J.M., Liebig, M.A., and Hanson, J.D. 2007. Soil water depletion and recharge under ten crop species and applications to the principles of dynamic cropping systems.Agronomy Journal 99: 931–938.CrossRefGoogle Scholar
  74. Miller, P. R., Waddington, J., McDonald, C., and Derksen, D.A. 2002. Cropping sequence affects wheat productivity on the semiarid northern Great Plains.Canadian Journal of Plant Science 82: 307–318.Google Scholar
  75. Mpepereki, S., Javaheri, F., Davis, P., and Giller, K.E. 2000. Soyabeans and sustainable agriculture. Promiscuous soyabeans in southern Africa.Field Crops Research 65: 137–149.CrossRefGoogle Scholar
  76. Muller, M.M. and Sundman, V. 1988. The fate of nitrogen (15N) released from different plant materials during decomposition under field conditions.Plant and Soil 105: 133–139.CrossRefGoogle Scholar
  77. Murphy, D.V., Fillery, I.R.P., and Sparling, G.P. 1998. Seasonal fluctuations in gross N mineralisation, ammonium consumption, and microbial biomass in a Western Australian soil under different land uses.Australian Journal of Agricultural Research 49: 523–535.CrossRefGoogle Scholar
  78. Naab, J.B., Chimphango, S.M.B., and Dakora, F.D. 2009. N2 fixation in cowpea plants grown in farmers’ fields in the Upper West Region of Ghana, measured using15N natural abundance technique.Symbiosis 48: 37–46.Google Scholar
  79. Namedo, S.L. and Gupta, S.C. 1994. Application and adoption of rhizobial inoculation in chickpea: on-farm experience in Madhya Pradesh, India. In:Linking Biological Nitrogen Fixation Research in Asia. Rupela, O.P., Kumar Roo, J.V.D.K., Wani, S.P., and Johansen, C., eds. ICRISAT, India, pp. 24–28.Google Scholar
  80. Ncube, B., Twomlow, S.J., van Wijk, M.T., Dimes, J.P., and Giller, K.E. 2007. Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in southwestern Zimbabwe.Plant and Soil 299: 1–15.CrossRefGoogle Scholar
  81. Norman, R.J., Gilmour, J.T., and Wells, B.R. 1990. Mineralization of nitrogen from nitrogen-15 labeled crop residues and utilization by rice.Soil Science Society of America Journal 54: 1351–1356.CrossRefGoogle Scholar
  82. Nuruzzaman, M., Lambers, H., Bolland, M.D.A., and Veneklaas, E.J. 2005. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western AustraliaPlant and Soil 271: 175–187.CrossRefGoogle Scholar
  83. Nyemba, R.C. and Dakora, F.D. 2005. Identifying suitable arable weeds as reference plants for measuring N2 fixation.Symbiosis 40: 79–86.Google Scholar
  84. Ojiem, J.O., Vanlauwe, B., de Ridder, N., and Giller, K.E. 2007. Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms.Plant and Soil 292: 119–135.CrossRefGoogle Scholar
  85. Okito, A., Alves, B.R.J., Urquiaga, S., and Boddey, R.M. 2004. Isotopic fractionation during N2 fixation by four tropical legumes.Soil Biology & Biochemistry 36: 1179–1190.CrossRefGoogle Scholar
  86. Pilbeam, C.J., Wood, M., and Jones, M.I. 1997. Proportion of total nitrogen and fixed nitrogen in shoots of lentil and chickpea grown in a Mediterranean-type environment.Experimental Agriculture 33: 139–148.CrossRefGoogle Scholar
  87. Peoples, M.B. and Craswell, E.T. 1992. Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture.Plant and Soil 141: 13–39.CrossRefGoogle Scholar
  88. Peoples, M.B. and Herridge, D.F. 2000. Quantification of biological nitrogen fixation in agricultural systems. In:Nitrogen Fixation: From Molecules to Crop Productivity. Pedrosa, F.O., Hungria, M., Yates, M.G., and Newton, W.E., eds. Kluwer Academic Publishers, The Netherlands, pp. 519–524.Google Scholar
  89. Peoples, M.B., Boddey, R.M., and Herridge, D.F. 2002a. Quantification of nitrogen fixation. In:Nitrogen Fixation at the Millennium. Leigh, G.J., ed. Elsevier Science, Amsterdam, pp. 357–389.CrossRefGoogle Scholar
  90. Peoples, M.B, Bowman, A.M., Gault, R.R., Herridge, D.F., McCallum, M.H., McCormick, K.M., Norton, R.M., Rochester, I.J., Scammell, G.J., and Schwenke, G.D. 2001. Factors regulating the contributions of fixed nitrogen by pasture and crop legumes to different farming systems of eastern Australia.Plant and Soil 228: 29–41.CrossRefGoogle Scholar
  91. Peoples, M.B., Giller, K.E., Herridge, D.F., and Vessey, J.K. 2002b. Limitations to biological nitrogen fixation as a renewable source of nitrogen for agriculture. In:Nitrogen Fixation: Global Perspectives. Finan, T., O’Brian, M.R., Layzell, D.B., Vessey, J.K., and Newton, W., eds. CAB International, Wallingford, UK, pp. 356–360.CrossRefGoogle Scholar
  92. Peoples, M.B., Gault, R.R., Lean, B., Sykes, J.D., and Brockwell, J. 1995a. Nitrogen fixation by soybean in commercial irrigated crops in central and southern New South Wales.Soil Biology & Biochemistry 27: 553–561.CrossRefGoogle Scholar
  93. Peoples, M.B., Ladha, J.K., and Herridge, D.F. 1995b. Enhancing legume N2 fixation through plant and soil management.Plant and Soil 174: 83–101.CrossRefGoogle Scholar
  94. Peoples, M.B., McLennan, P.O., and Brockwell, J. 2008. Hydrogen emission from nodulated soybeans [Glycine max (L.) Merr.] and consequences for the productivity of a subsequent maize (Zea mays L.) crop.Plant and Soil 307: 67–82.CrossRefGoogle Scholar
  95. Pule-Meulenberg, F. and Dakora, F.D. 2009. Assessing the symbiotic dependency of grain and tree legumes on N2 fixation for their N nutrition in five agro-ecological zones of Botswana.Symbiosis 48: 68–77.Google Scholar
  96. Rennie, R.I. and Dubetz, S. 1986. Nitrogen-15-determined nitrogen fixation in field-grown chickpea, lentil, fababean, and field pea.Agronomy Journal 78: 654–660.CrossRefGoogle Scholar
  97. Rennie, R.J. and Kemp, G.A. 1983a. N2-fixation in field bean quantified by15N isotope dilution. II. Effect of strains of Rhizobium phaseoli.Agronomy Journal 75: 640–644.CrossRefGoogle Scholar
  98. Rennie, R.J. and Kemp, G.A. 1983b. N2-fixation in field bean quantified by15N isotope dilution. II. Effect of cultivars of beans.Agronomy Journal 75: 645–649.CrossRefGoogle Scholar
  99. Rerkasem, B., Rerkasem, K., Peoples, M.B., Herridge, D.F., and Bergersen, F.J. 1988. Measurement of N2, fixation in maize (Zea mays L.)-ricebean (Vigna umbellata [Thunb.] Ohwi and Ohashi) intercrops.Plant and Soil 108: 125–135.CrossRefGoogle Scholar
  100. Rochester, I.J. and Peoples, M.B. 2005. Growing vetches (Vicia villosa Roth) in irrigated cotton systems: inputs of fixed N, N fertilizer savings and cotton productivity.Plant and Soil 271: 251–264.CrossRefGoogle Scholar
  101. Rochester, I.J., Peoples, M.B., Constable, G.A., and Gault, R.R. 1998. Faba beans and other legumes add nitrogen to irrigated cotton cropping systems.Australian Journal of Experimental Agriculture 38: 253–260.CrossRefGoogle Scholar
  102. Rochester, I.J., Peoples, M.B., Hulugalle, N.R., Gault, R.R., and Constable, G.A. 2001. Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems.Field Crops Research 70: 27–41.CrossRefGoogle Scholar
  103. Roughley, R.J., Gault, R.R., Gemell, L.G., Andrews, J.A., Brockwell, J., Dunn, B.W., Griffith, G.W., Hartley, E.J., Hebb, D.M., Peoples, M.B., and Thompson, J.A. 1995. Autecology ofBradyrhizobium japonicum in soybean-rice rotations.Plant and Soil 176: 7–14.CrossRefGoogle Scholar
  104. Russell, C.A. and Fillery, I.R.P. 1999. Turnover of nitrogen from compounds of lupin stubble to wheat in sandy soil.Australian Journal of Soil Research 37: 575–592.CrossRefGoogle Scholar
  105. Salvagiotti, F., Cassman, K.G., Specht, J.E., Walters, D.T., Weiss, A., and Dobermann, A. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review.Field Crops Research 108: 1–13.CrossRefGoogle Scholar
  106. Sanginga, N. 2003. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems.Plant and Soil 252: 25–39.CrossRefGoogle Scholar
  107. Sattar, M.A., Khanam, D., Ahmad, S., Haider, M.R., Podder, A.K., and Bhuiyan, M.A. 1997. On-farm experiments on rhizobial inoculants in Bangladesh: results, problems, and possible solutions. In:Extending Nitrogen Fixation Research to Farmers’ Fields. Rupela, O.P., Johansen, C., and Herridge, D.F., eds. ICRISAT, India, pp. 201–216.Google Scholar
  108. Schulz, S., Keatinge, J.D.H., and Wells, G.J. 1999. Productivity and residual effects of legumes in rice-based cropping systems in a warm-temperate environment. I. Legume biomass production and N fixation.Field Crops Research 61: 23–35.CrossRefGoogle Scholar
  109. Schwenke, G.D., Peoples, M.B., Turner, G.L., and Herridge, D.F. 1998. Does nitrogen fixation of commercial, dryland chickpea and faba bean crops in north-west New South Wales maintain or enhance soil nitrogen?Australian Journal of Experimental Agriculture 38: 61–70.CrossRefGoogle Scholar
  110. Schwenke, G.D., Felton, W.L., Herridge, D.F., Khan, D.F., and Peoples, M.B. 2002. Relating particulate organic matter-nitrogen (POM-N) and non-POM-N with pulse crop residues, residue management and cereal N uptake.Agronomie 22: 777–788.CrossRefGoogle Scholar
  111. Shah, Z., Shah, S., Herridge, D.F., and Peoples, M.B. 1997. Surveys of N2 fixation of lentil, mung bean and mash bean in farmers’ fields in NWFP, Pakistan. In:Extending Nitrogen Fixation Research to Farmers’ Fields. Rupela, O.P., Johansen, C., and Herridge, D.F., eds. ICRISAT, India, pp. 333–343.Google Scholar
  112. Shah, Z., Shah, S.H., Peoples, M.B., Schwenke, G.D., and Herridge, D.F. 2003. Crop residue and fertiliser N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility.Field Crops Research 83: 1–11.CrossRefGoogle Scholar
  113. Singleton, P.W., Bohlool, B.B., and Nakao, P.L. 1992. Legume response to rhizobial inoculation in the tropics: myths and realities. In:Myths and Science of Soils in the Tropics. Soil Science Society of America and American Society of Agronomy Special Publication 29: 135–155.Google Scholar
  114. Singleton, P.W., Boonkerd, N., Carr, T.J., and Thompson, J.A. 1997. Technical and market constraints limiting legume inoculant use in Asia. In:Extending Nitrogen Fixation Research to Farmers’ Fields. Rupela, O.P., Johansen, C., and Herridge, D.F., eds. ICRISAT, India, pp. 17–38.Google Scholar
  115. Slattery, J.J., Coventry, D.R., and Slattery, W. 2001. Rhizobial ecology as affected by the soil environment.Australian Journal of xperimental Agriculture 41: 289–298.CrossRefGoogle Scholar
  116. Smith, S.C., Bezdicek, D.F., Turco R.F., and Cheng, H.H. 1987. Seasonal N2 fixation by cool-season pulses based on several15N methods.Plant and Soil 97: 2–13.CrossRefGoogle Scholar
  117. Stevenson, F.C. and van Kessel, C. 1997. Nitrogen contribution of pea residues in a hummocky terrain.Soil Science Society of America Journal 61: 494–503.CrossRefGoogle Scholar
  118. Streeter, J. 1988. Inhibition of legume nodule formation and N2 fixation by nitrate.CRC Critical Reviews in Plant Science 7: 1–23.CrossRefGoogle Scholar
  119. Thies, J.E., Bohlool, B.B., and Singleton, P.W. 1991. Influence of the size of indigenous populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes.Applied and Environmental Microbiology 57: 19–28.PubMedGoogle Scholar
  120. Thies, J.E., Woomer, P.L., and Singleton, P.W. 1995. Enrichment ofBradyrhizobium spp. populations in soil due to cropping of the homologous host legume.Soil Biology & Biochemistry 27: 633–637.CrossRefGoogle Scholar
  121. Thomas, Robertson, M.J., Fukai, S., and Peoples, M.B. 2004. The effect of timing and severity of water deficit on growth, development, yield accumulation and nitrogen fixation of mungbean.Field Crops Research 86: 67–80.CrossRefGoogle Scholar
  122. Toomsan, B., Limpinuntana, V., Homchan, J., Wadisirisuk, P., and Boonkerd, N. 1994. Use of rhizobial inoculants: on-farm experience in Thailand. In:Linking Biological Nitrogen Fixation Research in Asia. Rupela, O.P., Kumar Rao, J.V.D.K., Wani, S.P., and Johansen, C., eds. ICRISAT, India, pp. 17–23.Google Scholar
  123. Toomsan, B., McDonagh, J.F., Limpinuntana, V., and Giller, K.E. 1995. Nitrogen fixation by groundnut and soyabean and residual nitrogen benefits to rice in farmers’ fields in Northeast Thailand.Plant and Soil 175: 45–56.CrossRefGoogle Scholar
  124. Turpin, J.E., Herridge, D.F., and Robertson, M.J. 2002. Nitrogen fixation and soil nitrate interactions in field-grown chickpea (Cicer arietinum) and fababean (Vicia faba).Australian Journal of Agricultural Research 53: 599–608.CrossRefGoogle Scholar
  125. Unkovich, M.J. and Pate, J.S. 2000. An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes.Field Crops Research 65: 211–228.CrossRefGoogle Scholar
  126. Unkovich, M.J., Pate, J.S., and Sanford, P. 1997. Nitrogen fixation by annual legumes in Australian Mediterranean agriculture.Australian Journal of Agricultural Research.48: 267–293.CrossRefGoogle Scholar
  127. Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, R., Giller, K., Alves, B., and Chalk, P. 2008.Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems. AClAR, Canberra, Australia, (in press).Google Scholar
  128. Uratsu, S.L., Keyser, H.H., Weber, D.F., and Lim, S.T. 1982. Hydrogen uptake (Hup) activity ofRhizobium japonicum from major U.S. soybean production areas.Crop Science 22: 600–602.CrossRefGoogle Scholar
  129. Van Kessel, C. and Hartley, C. 2000. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?Field Crops Research 65: 165–181.CrossRefGoogle Scholar
  130. Voision, A., Salon, C., Munier-Jolain, N.G., and Ney, B. 2002. Quantitative effects of soil nitrate, growth potential and phenology on symbiotic nitrogen fixation of pea (Pisum sativum L.).Plant and Soil 243: 31–42.CrossRefGoogle Scholar
  131. Walley, F.L., Clayton, G.W., Miller, P.R., Carr, P.M., and Lafond, G.P. 2007. Nitrogen economy of pulse crop production in the Northern Great Plains.Agronomy Journal 99: 1710–1718.CrossRefGoogle Scholar
  132. Wani, S.P., Rupela, O.P., and Lee, K.K. 1995. Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes.Plant and Soil 174: 29–49.CrossRefGoogle Scholar
  133. Zapata, F., Danso, S.K.A., Hardarson., G., and Fried, M. 1987. Nitrogen fixation in field-grown fababean.Agronomy Journal 79: 505–509.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • M. B. Peoples
    • 1
  • J. Brockwell
    • 1
  • D. F. Herridge
    • 2
  • I. J. Rochester
    • 3
  • B. J. R. Alves
    • 4
  • S. Urquiaga
    • 4
  • R. M. Boddey
    • 4
  • F. D. Dakora
    • 5
  • S. Bhattarai
    • 6
  • S. L. Maskey
    • 6
  • C. Sampet
    • 7
  • B. Rerkasem
    • 7
  • D. F. Khan
    • 8
  • H. Hauggaard-Nielsen
    • 9
  • E. S. Jensen
    • 9
  1. 1.CSIRO Plant IndustryCanberraAustralia
  2. 2.New South Wales Department of Primary IndustriesCalalaAustralia
  3. 3.CSIRO Plant IndustryNarrabriAustralia
  4. 4.Embrapa-AgrobiclogiaSeropédicaBrazil
  5. 5.Tshwane University of TechnologyPretoriaSouth Africa
  6. 6.Soil Science DivisionNARCKathmanduNepal
  7. 7.Faculty of AgricultureUniversity of Chiang MaiChiang MaiThailand
  8. 8.Agricultural Research Station BannuNorth West Frontier ProvincePakistan
  9. 9.Biosystems Department, Risø National Laboratory for Sustainable EnergyTechnical University of Denmark-DTURoskildeDenmark

Personalised recommendations