Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The effects of the arbuscular mycorrhizal fungusGlomus deserticola on growth of tomato plants grown in the presence of olive mill residues modified by treatment with saprophytic fungi

Abstract

Olive oil extraction generates large amounts of olive mill residues (DOR) which may be used as fertilizer. The influence of arbuscular mycorrhizal (AM) on the phytotoxicity of dry olive residue (DOR) transformed with saprophytic fungi was studied. Aqueous extraction of DOR gave an (ADOR) fraction and an exhausted (SDOR) fraction, both of which had less phytotoxicity for tomato than the original DOR. The saprophytic fungiTrametes versicolor andPycnoporus cinnabarinus further decreased the phytotoxicity of ADOR and SDOR on tomato. The decrease of phenols concentration and the differences in the level of laccase activity caused by these fungi suggest did not account fully for the reduced phytoxicity but the fact that the higher hydrolytic enzyme activity ofP. cinnabarinus, paralleled the decrease of phytotoxicity, indicates that these enzymes seem to be involved. The AM fungusGlomus deserticola increased or exacerbated the beneficial effect of SDOR incubated with saprophytic fungi, in terms of dry weight of tomato plants. The percentage of root length colonized byG. deserticola strongly decreased in presence of DOR, but the level of mycorrhization was higher in presence of ADOR or SDOR. Our results suggest that the combination of aqueous extraction and incubation with saprophytic fungi will open the way for the use of olive oil extraction residues as organic amendment in agricultural soils.

This is a preview of subscription content, log in to check access.

References

  1. Abu-Zreig, M. and AI-Widyan, M. 2002. Influence of olive mills solid waste on soil hydraulic properties.Communications in Soil Science and Plant Analysis 33: 505–517.

  2. Adriano-Anaya, M.L., Salvador-Figueroa, M., Ocampo, J.A., and García-Romera, I. 2006. Hydrolytic enzymes production in maize (Zea mays) and sorghum (Sorghum bicolor) roots inoculated withGluconacetobacter diazotrophicus andGlomus intraradices.Soil Biology and Biochemistry 38: 879–886.

  3. Aranda, E., Sampedro, I., Ocampo, J.A., and García-Romera, I. 2004a. Contribution of hydrolytic enzymes produced by saprobe fungi on the decrease of plant toxicity caused by water-soluble substances of olive mill dry residue.Applied Microbiology and Biotechnology 64: 132–135.

  4. Aranda, E., Sampedro, I., Ocampo, J.A., and García-Romera, I. 2006. Phenolic removal of olive-mill dry residues by laccase activity of white-rot fungi and its impact on tomato plant growth.International Biodeterioration and Biodegradation 58: 176–179.

  5. Arriagada, C., Herrera, M.A., García-Romera, I., and Ocampo, J.A. 2004. Tolerance to Cd of soybean (Glycine max) and eucalyptus (Eucalyptus globulus) inoculated with arbuscular mycorrhizal and saprope fungi.Symbiosis 36: 285–301.

  6. Boyle, C.D. and Hellenbrand, K.E. 1991. Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings.Canadian Journal of Botany 69: 1764–1771.

  7. Brunetti, G., Plaza, C, and Senesi, N. 2005. Olive pomace amendment in Mediterranean conditions: effect on soil and humic acid properties and wheat (Triticum turgidum L.) yield.Journal of Agricultural and Food Chemistry 53: 6730–6737.

  8. Bucheli, P., Doares, S.H., Albersheim, P., and Darvill, A. 1990. Host-pathogen interactions. XXXVI. Partial purification and characterization of heat-labile molecules secreted by the rice blast pathogen that solubilize plant cell wall fragments that kill plant cells.Physiology and Molecular Plant Pathology 36: 159–173.

  9. Caravaca, F., Figueroa, D., Alguacil, M.M., and Roldán, A. 2003. Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land.Bioresource Technology 90: 65–70.

  10. Casa, R., D’Annibale, A., Pieruccetti, F., Stazi, S.R., Sermanni, G.G., and Lo Cascio, B. 2003. Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability.Chemosphere 50: 959–966.

  11. Cermola, F., DellaGreca, M., Iesce, M.R., Montella, S., Pollio, A., and Temussi, F. 2004. A mild photochemical approach to the degradation of phenols from olive oil mill wastewater.Chemosphere 55: 1035–1041.

  12. Dix, N.J. and Webster, J. 1995.Fungal Ecology. Chapman and Hall, England.

  13. Fracchia, S., Garcia-Romera, I., Godeas, A., and Ocampo, J.A. 2000. Effect of the saprophytic fungusFusarium oxysporum on arbuscular mycorrhizal colonization and growth of plants in greenhouse and field trials.Plant and Soil 223: 175–184.

  14. Fracchia, S., Sarnpedro, I., Scervino, J.M., García-Romera, I., Ocampo, J.A., and Godeas, A. 2004. Influence of saprobe fungi and their exudates on arbuscular mycorrhizal symbioses.Symbiosis 36: 169–182.

  15. García-Garrido, J.M., Tribak, M., Rejón-Palomares, A., Ocampo, J.A., and Garcia-Romera, I. 2000. Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots.Journal of Experimental Botany 51: 1443–1448.

  16. Ginos, A., Manios, T., and Mantzavinos, D. 2006. Treatment of olive mill effluent by coagulation-flocculation-hydrogen peroxide oxidation and effect on phytotoxicity.Journal of Hazard Material 133: 135–142.

  17. Giovannetti, M. and Mosse, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots.New Phytologist 84: 489–500.

  18. Hewitt, E.J. 1966. Sand water culture methods used in the study of plant nutrition. Commonwealth Agriculture Bureau, Technical communication, Farmham Royal, Bucks, UK, No. 22.

  19. Isidori, M., Lavorgna, M., Nardelli, A., and Parrella, A. 2005. Model study of the effect of IS phenolic olive mill wastewater constituents on seed germination andVibrio fischeri metabolism.Journal ofAgricultural and Food Chemistry 53: 8414–8417.

  20. Iyamuremye, F. and Dick, R.P. 1996. Organic amendments and phosphorus sorption by soils.Advances in Agronomy 56: 139–185.

  21. Khan, G., Kuek, C., Chaudhry, T.M., Khoo, C.S., and Hayes, W.J. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation.Chemosphere 41: 197–207.

  22. Kornilis, D.P., Karatzas, E., and Halvadakis, C.P. 2005. The effect of olive mill wastewater on seed germination after various pretreatment techniques.Journal of Environmental Management 74: 339–348.

  23. Lachica, M., Recalde, L., and Esteban, E. 1965. Métodos analíticos utilizados en la Estación Experimental del Zaidín.Anales de Edafología y Agrobiología 24: 589–610.

  24. Leadir, L., Fries, M., Pacovsky, R.S., Safir, G.R., and Siquiera, J.O. 1997. Plant growth and arbuscular mycorrhizal fungal colonization affected by exogenously applied phenolic compounds.Journal of Chemistry and Ecology 23: 1755–1767.

  25. Martín, J., Sampedro, I., García-Romera, I., Garcia-Garrido, J.M., and Ocampo, J.A. 2002. Arbuscular mycorrhizal colonization and growth of soybean (Glycine max) and lettuce (Lactuca sativa) and phytotoxic effects of olive mill residues.Soil Biology and Biochemistry 34: 1769–1775.

  26. Martínez, A., Obertello, M., Pardo, A., Ocampo, J.A., and Godeas, A. 2004. Interaction betweenTrichoderma pseudokoningii strains and the arbuscular mycorrhizal fungiGlomus mosseae andGigaspora rosea.Mycorrhiza 14: 79–84.

  27. Medina, A., Vassilev, N., Barea, J.M., and Azcón, R. 2005. Application ofAspergillus niger-treated agrowaste residue andGlomus mosseae for improving growth and nutrition ofTrifolium repens in a Cd-contamined soil.Journal of Biotechnology 116: 369–378.

  28. McDougall, G.J. and Fry, S.C. 1989. Structure-activity relationships for oligosaccharides with anti-auxin activity.Plant Physiologist 89: 883–887.

  29. Moreno, E., Perez, J., Ramos-Cormenzana, A., and Martinez, J. 1987. Antimicrobial effect of wastewaters from olive oil extraction plants selecting soil bacteria after incubation with diluted waste.Microbios 51: 169–174.

  30. Ocampo, J.A. 1993. Influence of Pesticides on VA mycorrhiza. In:Pesticide-Plant Pathogen Interactions in Crop Production: Beneficial and Deleterious Effects. Altman, J., ed. CRC Press, Boca-Raton, Florida, pp. 214–216.

  31. Ocampo, J.A., Barea, J.M., and Montoya, E. 1975. Interaction betweenAzotobacter and phosphobacteria and their establishment in the rhizosphere as affected by soil fertility.Canadian Journal of Microbiology 21: 1160–1165.

  32. Paredes, C., Cegarra, J., Roig, A., Sánchez-Monedero, M.A., and Bernal, M.P. 1999. Characterization of olive-mill wastewater (alpechín) and its sludge for agricultural purposes.Bioresource Technology 67: 111–115.

  33. Perez, J., De la Rubia, T., Moreno, J., and Martinez, J. 1992. Phenolic content and antibacterial activity of olive oil waste waters.Environmental Toxicology and Chemistry 11: 489–495.

  34. Phillips, J.M. and Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.Transactions of the British Mycological Society 55: 158–161.

  35. Querejeta, J.I., Roldan, A., Albaladejo, J., and Castillo, V. 1998. The role of mycorrhizae, site preparation, and organic amendment in the afforestation of a semi-arid Mediterranean site withPinus halepensis.Forest Science 44: 203–211.

  36. Radford, A., Stone, P.J., and Taleb, F. 1996. Cellulase and amylase complexes. In:Biosynthesis and Biodegradation of Cellulose. Haigler, C.H. and Weimer, P.J., eds. Marcel Dekker, New York, pp. 535–597.

  37. Ribereau-Gayon, P. 1968.Les Composes Phenoliques des Vegetaux. Dumond, Paris.

  38. Rejón-Palornares, A., García-Garrido, J.M., Ocampo, J.A., and García-Rornera, I. 1996. Presence of xyloglucan-hydrolyzing glucanases (xyloglucanases) in arbuscular mycorrhizal symbiosis.Symbiosis 21: 249–261.

  39. Sampedro, I., Aranda E., Martín, J., García-Garrido, J.M., García-Rornera, I., and Ocampo, J.A. 2004a. Saprobic fungi decrease plant toxicity caused by olive mill residues.Applied Soil Ecology 26: 149–156.

  40. Sampedro, I., Romero, C., Ocampo, J.A., Brenes, M., and García-Rornera, I. 2004b. Removal of monomeric phenols in dry mill olive residue by saprobic fungi.Journal of Agricultural and Food Chemistry 52: 4487–4492.

  41. Sampedro, I., Marinari, S., D’ Annibale, A., Grego, S., Ocampo, J.A., and García-Romera, I. 2007. Organic matter evolution and partial detoxification in two-phase olive mill waste colonized by white rot fungi.International Biodeterioration and Biodegradation 60: 116–125.

  42. Saparrat, M.C.N., Martínez, M.J., Toumier, H.A., Cabello, M.N., and Arambarri, A.M. 2000. Production of ligninolytic enzymes by Fusarium solani strains isolated from different substrate.World Journal of Microbiology and Biotechnology 16: 199–803.

  43. Scervino, J.M., Ponce, M.A., Erra-Bassells, R., Vierheilig, H., Ocampo, J.A., and Godeas, A. 2005. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth ofGigaspora andGlomus.Mycological Research 109: 789–794.

  44. Shetty, K.G., Hetrick, B.A.D., Figge, D.A.H., and Schwab, A.P. 1994. Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil.Environmental Pollution 86: 181–188.

  45. Tisdall, J.M. 1991. Fungal hyphae and structural stability of soil.Austrian Journal of Soil Research 29: 729–743.

  46. Vassilev, N., Fenice, M., Federici, F., and Azcón, R. 1997. Olive mill waste water treatment by immobilized cells ofAspergillus niger and its enrichment with soluble phosphate.Process Biochemistry 32: 617–620.

  47. Vierheilig, H., Bago, B., Albrecht, C., Poulin, M.J., and Piche, Y. 1998. Flavonoids and arbuscular-mycorrhizal fungi. In:Flavonoids in the Living System, Manthey, J. and Buslig, B., eds., Plenum Press, New York, pp. 9–33.

  48. Vogel-Mikus, K., Drobne, D., and Regvar, M. 2005. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycressThlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia.Environmental Pollution 133: 233–242.

  49. Volante, A., Lingua, G., Cesaro, P., Cresta, A., Puppo, M., Ariati, L., and Berta, G. 2005. Influence of three species of arbuscular mycorrhizal fungi on the persistence of aromatic hydrocarbons in contaminated substrates.Mycorrhiza 16: 43–50.

Download references

Author information

Correspondence to I. García-Romera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aranda, E., Sampedro, I., Díaz, R. et al. The effects of the arbuscular mycorrhizal fungusGlomus deserticola on growth of tomato plants grown in the presence of olive mill residues modified by treatment with saprophytic fungi. Symbiosis 47, 133–140 (2009). https://doi.org/10.1007/BF03179973

Download citation

Keywords

  • Arbuscular mycorrhizal
  • biofertilizer
  • dry olive mill residue
  • phytotoxicity
  • saprophytic fungi