Advertisement

Journal of Physiology and Biochemistry

, Volume 56, Issue 3, pp 283–294 | Cite as

The role of phytic acid in legumes: antinutrient or beneficial function?

  • G. Urbano
  • M. López-Jurado
  • P. Aranda
  • C. Vidal-Valverde
  • E. Tenorio
  • J. Porres
Minireviews

Abstract

This review describes the present state of knowledge about phytic acid (phytate), which is often present in legume seeds. The antinutritional effects of phytic acid primarily relate to the strong chelating associated with its six reactive phosphate groups. Its ability to complex with proteins and particularly with minerals has been a subject of investigation from chemical and nutritional viewpoints. The hydrolysis of phytate into inositol and phosphates or phosphoric acid occurs as a result of phytase or nonenzymatic cleavage. Enzymes capable of hydrolysing phytates are widely distributed in micro-organisms, plants and animals. Phytases act in a stepwise manner to catalyse the hydrolysis of phytic acid. To reduce or eliminate the chelating ability of phytate, dephosphorylation of hexa- and penta-phosphate forms is essential since a high degree of phosphorylation is necessary to bind minerals. There are several methods of decreasing the inhibitory effect of phytic acid on mineral absorption (cooking, germination, fermentation, soaking, autolysis). Nevertheless, inositol hexaphosphate is receiving increased attention owing to its role in cancer prevention and/or therapy and its hypocholesterolaemic effect.

Key words

Phytate Inositol phosphates Legumes Mineral absorption Cancer prevention Hypocholesterolemic effect 

Papel del ácido fítico en las legumbres

Resumen

Esta revisión describe el estado actual de conocimientos sobre el ácido fítico, presente de forma natural en muchos alimentos derivados de plantas, y, sobre todo, en las legumbres. Sus efectos antinutritivos se relacionan con su fuerte capacidad para formar complejos con proteínas y minerales. La hidrólisis del fitato en inositol y fosfatos se produce por acción de fitasas, ampliamente distribuidas en microorganismos, plantas y animales, y también por procesos no enzimáticos. Las fitasas actúan de forma escalonada siendo necesario conseguir la defosforilación del inositol hexa y penta fosfato, ya que estas son las formas con mayor capacidad quelante. Hay varios métodos para disminuir el efecto antinutricional del ácido fítico, tales como el remojo, cocinamiento, la germinación, fermentación y adición de enzimas. Sin embargo, el inositol hexafosfato está siendo objeto de nuevo interés por su papel en la prevención del cáncer y/o en su terapia, y por su efecto anticolesterolémico.

Palabras clave

Fitato Inositol fosfatos Legumbres Absorción mineral Prevención del cáncer Efecto hipocolesterolémico 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abernathy, R. H., Paulson, G. M. and Ellis, R. Jr. (1973): J. Agric. Food Chem., 21, 282–286.Google Scholar
  2. 2.
    Anderson R. L. and Wolf, W. J. (1995): J. Nutr., 125, 581S-588S.PubMedGoogle Scholar
  3. 3.
    Asada, K. and Kasai, Z. (1959): Mem. Res. Inst. Food Sci. Kyoto Univ., 18, 32–37.Google Scholar
  4. 4.
    Asada, K. and Kasai, Z. (1962): Plant Cell Physiol., 3, 397–403.Google Scholar
  5. 5.
    Asada, K. Tanaka, K. and Kasai, Z. (1969): Ann. N.Y. Acad. Sci., 165, 801–814.PubMedGoogle Scholar
  6. 6.
    Bailey, H. S. and Thompson, R. G. (1969): J. Anim. Sci., 28, 484–490.Google Scholar
  7. 7.
    Barker, C. J. and Berggren, P. O. (1999): Anticancer Res., 19, 3737–3741.PubMedGoogle Scholar
  8. 8.
    Barre, R., Curtois, J. E. and Wormser, G. (1954): Bull. Soc. Chim. Biol., 36, 455–460.PubMedGoogle Scholar
  9. 9.
    Baten, A., Ullah, A., Tomazic, V. J. and Shamsuddin, A. M. (1989): Carcinogenesis, 10, 1595–1598.PubMedGoogle Scholar
  10. 10.
    Belavady, B. and Banerjee, S. (1953): Food Res., 18, 223–229.Google Scholar
  11. 11.
    Besecker, R. J., Jr., Plumlee, M. P., Pickett, R. A. and Conrad, J. H. (1967): J. Anim. Sci., 26, 1477–1482.Google Scholar
  12. 12.
    Bitar, K. and Reinhold, J. G. (1972): Biochim. Biophys. Acta, 268, 442–452.PubMedGoogle Scholar
  13. 13.
    Borgo, E. (1983): French Patent 2515042.Google Scholar
  14. 14.
    Bourdillon, J. (1951): J. Biol. Chem., 189, 65–72.PubMedGoogle Scholar
  15. 15.
    Cerklewski, F. L. (1992): J. Nutr. Biochem., 3, 87–90.Google Scholar
  16. 16.
    Cosgrove, D. J. (1966): Rev. Pure Appl. Chem., 16, 209–215.Google Scholar
  17. 17.
    Chitra, U., Vimala, V., Singh, U. and Geervani, P. (1995): Plant Foods Hum. Nutr., 47, 163–172.PubMedGoogle Scholar
  18. 18.
    Chitra, U., Singh, U. and Rao, P. V. (1996): Plant Foods Hum. Nutr., 49, 307–316.PubMedGoogle Scholar
  19. 19.
    Couzy, F., Mansourian, R., Labate, A., Guinchard, S. and Montagne, D. H. (1998): Br. J. Nutr., 80, 177–182.PubMedGoogle Scholar
  20. 20.
    Crean, D. E. C. and Haisman, D. R. (1953): J. Sci. Food Agric., 14, 824–831.Google Scholar
  21. 21.
    Chang, R., Schwimmer, S. and Burr, H. K. (1977): J. Food Sci., 42, 1098–1107.Google Scholar
  22. 22.
    Davies, N. T., Hristic, V. and Flett, A. A. (1977): Nutr. Rep. Int., 15, 207–215.Google Scholar
  23. 23.
    Davies, N. T. and Nightingale, R. (1975): Br. J. Nutr., 34, 243–250.PubMedGoogle Scholar
  24. 24.
    Davies, N. T. and Olpin, S. E. (1979): Br. J. Nutr., 41, 590–603.PubMedGoogle Scholar
  25. 25.
    Davies, N. T. and Reid, H. (1979): Br. J. Nutr., 41, 579–589.PubMedGoogle Scholar
  26. 26.
    de Rham, O. and Jost, T. (1979): J. Food Sci., 44, 596–608.Google Scholar
  27. 27.
    Dong, Z., Huang, C. and Ma, W. Y. (1999): Anti-cancer Res., 19, 3743–3747.Google Scholar
  28. 28.
    Fernandez, M., Aranda, P., López-Jurado, M., García-Fuentes, M. A. and Urbano, G. (1997): J. Agric. Food Chem., 45, 4367–4371.Google Scholar
  29. 29.
    Fontaine, T. D., Pons, W. A., Jr. and Irving, G. W. (1946): J. Biol. Chem., 164, 487–382.PubMedGoogle Scholar
  30. 30.
    Ford, J. R., Mustakas, G. C. and Schmutz, R. D. (1978): J. Am. Oil Chem. Soc., 55, 371–382.Google Scholar
  31. 31.
    Fordham, J. R., Wells, C. E. and Chen, L. R (1975): J. Food Sci., 40, 552–391.Google Scholar
  32. 32.
    García, M. C., Torre, M., Marina, M. L. and Laborda, F. (1997): Crit. Rev. Food Sci. Nutr., 37, 361–391.PubMedGoogle Scholar
  33. 33.
    Gibbins, L. N. and Norris, F. W. (1963): Biochem. J., 86, 67–75.PubMedGoogle Scholar
  34. 34.
    Gifford-Steffen, S. R. and Clydesdale, F. M. (1993): J. Food. Prot., 56, 24–26.Google Scholar
  35. 35.
    Graf, E. and Eaton, J. W. (1990): Free Radical Biol. Med., 8, 61–69.Google Scholar
  36. 36.
    Hansen, M., Sandstrom, B. and Lonnerdal, B. (1996): Pediatr. Res., 40, 547–552.PubMedGoogle Scholar
  37. 37.
    Hegsted, D. M., Trulson, M. F. and Stare, F. J. (1954): Physiol. Rev., 34, 221–231.PubMedGoogle Scholar
  38. 38.
    Henneman, P. H., Benedict, P. H., Forbes, A. P. and Dudley, H. R. (1958): N. Engl. J. Med., 17, 802–807.Google Scholar
  39. 39.
    Hill, R. and Tyler, C. (1954): J. Agric. Sci., 44, 324–330.Google Scholar
  40. 40.
    Hirabayashi, M., Matsui, T. and Yano, H. (1998): Biol. Trace Elem. Res., 61, 227–234.PubMedGoogle Scholar
  41. 41.
    Hussain, A. and Buschuk, W. (1992): J. Agric. Food. Chem., 40, 1938–1942.Google Scholar
  42. 42.
    Ismail-Beigi, F., Faraji, B. and Reinhold, J. G. (1977): Am. J. Clin. Nutr., 30, 1721–1725.PubMedGoogle Scholar
  43. 43.
    Iyer, V., Salunkhe, D. K., Sathe, S. K. and Rockland, L. B. (1980): Qual. Plant. Plant Foods Hum. Nutr., 30, 45–50.Google Scholar
  44. 44.
    Jariwalla, R. J., Sabin, R., Lawson, S., Bloch, D. A., Prender, M., Andrews, V. and Herman, Z. S. (1988): Nutr. Res., 8, 813–827.Google Scholar
  45. 45.
    Jariwalla, R. J., Sabin, R., Lawson, S. and Herman, Z. S. (1990): J. Appl. Nutr., 42, 18–28.Google Scholar
  46. 46.
    Kar, S., Quirion, R. and Parent, A. (1994): Neuroreport, 5, 625–628.PubMedGoogle Scholar
  47. 47.
    Kennedy, A. R. (1995): J. Nutr., 125, 733S-743S.PubMedGoogle Scholar
  48. 48.
    Klevay, L. M. (1975): Am. J. Clin. Nutr., 28, 764–774.PubMedGoogle Scholar
  49. 49.
    Knuckles, B. E., Kuzmicky, D. D., Gumbmann, M. R. and Betschart, A. A. (1989): J. Food. Sci., 54, 1348–1350.Google Scholar
  50. 50.
    Kumar, K. G., Venkataraman, L. V., Jaya, T. V. and Krishnamurthy, K. S. (1978): J. Food Sci., 43, 85–90.Google Scholar
  51. 51.
    Kuvaeva, E. B. and Kretovich, V. L. (1978): Sov. Plant Physiol., 25, 290–296.Google Scholar
  52. 52.
    Lim, P. E. and Tate, M. (1973): Biochim. Biophys. Acta, 302, 316–328.PubMedGoogle Scholar
  53. 53.
    Lott, J. N. A. and Buttrose, M. K. (1978): Aust. J. Plant Physiol., 5, 89–95.Google Scholar
  54. 54.
    Lui, N. S. T. and Altschul, A. M. (1967): Arch. Biochem. Biophys., 121, 678–683.PubMedGoogle Scholar
  55. 55.
    Maddaiah, V. T., Kurnick, A. A. and Reid, B. L. (1964): Proc. Soc. Exp. Biol. Med., 115, 391–403.PubMedGoogle Scholar
  56. 56.
    Maiti, I. B. and Biswas, B. B. (1974): Phytochemistry, 18, 316–321.Google Scholar
  57. 57.
    Maiti, I. B., Majumdar, A. L. and Biswas, B. B. (1974): Phytochemistry, 13, 1047–1053.Google Scholar
  58. 58.
    Makower, R. U. (1969): J. Sci. Food Agric., 20, 633–670.Google Scholar
  59. 59.
    Mandal, A. C. and Biswas, B. B. (1970): Plant Physiol., 45, 4–10.PubMedGoogle Scholar
  60. 60.
    Mandal, N. C., Burman, S. and Biswas, B. B. (1972): Phytochemistry, 11, 495–501.Google Scholar
  61. 61.
    Mattson, S. (1946): Acta Agric. Sci., 2, 185–189.Google Scholar
  62. 62.
    Mayer, A. M. (1958): Enzymologia, 19, 1–7.PubMedGoogle Scholar
  63. 63.
    McCance, R. A. and Widdowson, E. M. (1935): Biochem. J., 298, 2694–2699.Google Scholar
  64. 64.
    McKinney, L. L., Sollars, W. F. and Setzkorn, E. A. (1949): J. Biol. Chem., 178, 117–122.PubMedGoogle Scholar
  65. 65.
    Menniti, F. S., Oliver, K. G., Putney, J. W. Jr. and Shears, S. B. (1993): Trends Biol. Sci., 18, 53–56.Google Scholar
  66. 66.
    Morris, G. F. I., Thurman, D. A. and Boulter, D. (1970): Phytochemistry, 9, 1707–1713.Google Scholar
  67. 67.
    Multani, J. S., Cepurneck, C. P., Davis, P. S. and Saltman, P. (1970): Biochemistry, 9, 3970–3974.PubMedGoogle Scholar
  68. 68.
    Nahapetian, A. and Young, V. R. (1980): J. Nutr., 110, 1458–1472.PubMedGoogle Scholar
  69. 69.
    Nahapetian, A. and Bassiri, A. (1976): J. Agric. Food Chem., 24, 947–951.PubMedGoogle Scholar
  70. 70.
    Nelson, T. S. and Kirby, L. K. (1979): Nutr. Rep. Int., 20, 729–734.Google Scholar
  71. 71.
    Nelson, T. S., Daniels, J. B., Hall, J. R. and Shields, L. G. (1976): J. Anim. Sci., 42, 1509–1513.Google Scholar
  72. 72.
    Nestares, T., Barrionuevo, M., Urbano, G. and López-Frías (1999): J. Agric. Food Chem., 47, 2807–2812.PubMedGoogle Scholar
  73. 73.
    Nickel, K. P. and Belury, M. A. (1999): Cancer Lett., 140, 105–111.PubMedGoogle Scholar
  74. 74.
    Nicolaysen, R. and Njaa, L. R. (1951): Acta Physiol. Scand., 22, 246–251.PubMedGoogle Scholar
  75. 75.
    Noland, P. R., Funderburg, M. and Johnson, Z. (1968): J. Anim. Sci., 27, 1155–1169.Google Scholar
  76. 76.
    Nwokolo, E. N. and Bragg, D. B. (1977): Can. J. Anim. Sci., 57, 475–481.Google Scholar
  77. 77.
    O’Dell, B. L. (1979): In “Soy Protein and Human Nutrition” (Wilcke, H. L., Hopkins, D. T. and Waggle, D. M., eds.), Academic Press, New York.Google Scholar
  78. 78.
    O’Dell, B. L. (1969): Am. J. Clin. Nutr., 22, 1315–1320.PubMedGoogle Scholar
  79. 79.
    O’Dell, B. L. and de Boland, A. (1976): J. Agric. Food Chem., 24, 804–810.Google Scholar
  80. 80.
    Ohkawa, T., Ebisuno, S., Kitagawa, M., Marimoto, S., Miyazaki, Y. and Yasukawa, S. (1984): J. Urol., 132, 1140–1145.PubMedGoogle Scholar
  81. 81.
    Okubo, K., Myers, D. V. and Iacobucci, G. A. (1976): Cereal Chem., 53, 513–517.Google Scholar
  82. 82.
    Okubo, K., Waldrop, A. B., Iacobucci, G. A. and Myers, D. V. (1975): Cereal Chem., 52, 263–267.Google Scholar
  83. 83.
    Omosaiye, O. and Cheryan, M. (1979): Cereal Chem., 56, 58-FALTA PÁGINA FINAL Google Scholar
  84. 84.
    Otake, T., Shiminaka, H., Kanai, M., Miyano, K., Ueba, N., Kunita, N. And Kurimura, T. (1989): J. Jap. Assoc. Inf. Dis., 63, 676–683.Google Scholar
  85. 85.
    Owen, R. W., Weisgerber, U. M., Spiegelhalder, B. and Bartsch, H. (1996): Gut, 38, 591–597.PubMedGoogle Scholar
  86. 86.
    Pallauf, V. J., Höhler, D. and Rimbach, G. (1992): J. Anim. Physiol. Anim. Nutr., 68, 1–9.Google Scholar
  87. 87.
    Patwardhan, V. N. (1937): Biochem. J., 31, 560–573.PubMedGoogle Scholar
  88. 88.
    Potter, S. M. (1995): J. Nutr., 125, 606S-611S.PubMedGoogle Scholar
  89. 89.
    Rackis, J. J. and Anderson, R. L. (1977): Food Prod. Dev., 11, 38–43.Google Scholar
  90. 90.
    Ranhotra, G. S. (1972): J. Food Sci., 37, 12–17.Google Scholar
  91. 91.
    Ranhotra, G. S. and Loewe, R. J. (1975): J. Food Sci., 40, 940–944.Google Scholar
  92. 92.
    Ranhotra, G. S. (1973): Cereal Chem., 50, 355–359.Google Scholar
  93. 93.
    Ranhotra, G. S., Loewe, R. J. and Puyat, L. V., (1974): J. Food Sci., 39, 1023–1028.Google Scholar
  94. 94.
    Rao, P. S., Liu, X.-K., Das, D. K., Weinstein, G. S. and Tyras., D. H. (1991): Ann. Thorac. Surg., 52, 908–912.PubMedGoogle Scholar
  95. 95.
    Reddy, N. R. and Salunkhe, D. K. (1981): J. Food Sci., 46, 564–570.Google Scholar
  96. 96.
    Reddy, N. R., Balakrishnan, C. V. and Salunkhe, D. K. (1978): J. Food Sci., 43, 540–546.Google Scholar
  97. 97.
    Reddy, N. R., Sathe, S. K. and Salunkhe, D. K. (1982): Adv. Food Res., 28, 1–6.PubMedGoogle Scholar
  98. 98.
    Reinhold, J. G., Faradji, B., Abadi, P. and Ismail-Beigi, F. (1976): J. Nutr., 106, 493–497.PubMedGoogle Scholar
  99. 99.
    Reinhold, J. G., Parsa, A., Karimian, N., Hammick, J. W. and Ismail-Beigi, F. (1974): J. Nutr., 104, 976–981.PubMedGoogle Scholar
  100. 100.
    Rosenbaum, T. M. and Baker, B. E. (1969): J. Sci. Food Agric., 20, 709.Google Scholar
  101. 101.
    Saio, K., Koyama, E. and Watanabe, T. (1968): Agric. Biol. Chem., 32, 448–452.Google Scholar
  102. 102.
    Saio, K., Koyama, S. and Watanabe, T. (1967): Agric. Biol. Chem., 31, 319–323.Google Scholar
  103. 103.
    Sakamoto, K., Vucenik, I. and Shamsuddin, A. M. (1993): J. Nutr., 123, 713–720.PubMedGoogle Scholar
  104. 104.
    Sandberg, A. S., Carlsson, N. G. and Svanberg, D. (1989): J. Foos. Sci., 54, 159–161.Google Scholar
  105. 105.
    Sandberg, A. S., Brune, M., Carlsson, N. G., Hallberg, L., Skoglund, E. and Ros Hulthen, L. (1999): Am. J. Clin. Nutr., 70, 240–246.PubMedGoogle Scholar
  106. 106.
    Shamsuddin, A. M. and Ullah, A. (1989): Carcinogenesis, 10, 625–626.PubMedGoogle Scholar
  107. 107.
    Shamsuddin, A. M., Ullah, A. and Chakravarthy, A. (1989): Carcinogenesis, 10, 1461–1463.PubMedGoogle Scholar
  108. 108.
    Shamsuddin, A. M., Baten, A. and Lalwani, N. D. (1992): Cancer Lett., 64, 195–202.PubMedGoogle Scholar
  109. 109.
    Shamsuddin, A. M., Elsayed, A. and Ullah, A. (1988): Carcinogenesis, 9, 577–580.PubMedGoogle Scholar
  110. 110.
    Shamsuddin, A. M. and Vucenik, I. (1999): Anticancer Res., 19, 3671–3674.PubMedGoogle Scholar
  111. 111.
    Smith, A. K. and Rackis, J. J. (1953): J. Am. Chem. Soc., 79, 633–637.Google Scholar
  112. 112.
    Stahl, C. H., Roneker, K. R., Thornton, J. R. and Lei, X. G. (2000): J. Anim. Sci., 78, 668–674.PubMedGoogle Scholar
  113. 113.
    Subramanyan, V., Narayana Rao, M., Rama Rao, G. and Swaminathan, M. (1955): Br. J. Nutr., 9, 350–356.Google Scholar
  114. 114.
    Sudermadji, S. and Markakis, P. (1977): J. Sci. Food Agric., 28, 15–19.Google Scholar
  115. 115.
    Tabekbia, M. M. and Lub, B. S. (1979): Dtsch. Lebensm. Rundsch., 75, 57–61.Google Scholar
  116. 116.
    Tanaka, K., Yoshida, T. and Kasai, Z. (1974): Plant Cell Physiol., 15, 147–151.Google Scholar
  117. 117.
    Thompson, L. U. and Zang, L. (1991): Carcinogenesis, 12, 2041–2045.PubMedGoogle Scholar
  118. 118.
    Thomson, D. B. and Erdman, J. W. Jr. (1985): J. Nutr., 115, 319–326.Google Scholar
  119. 119.
    Tully, R. E. and Beevers, H. (1976): Plant Physiol., 58, 710–714.PubMedGoogle Scholar
  120. 120.
    Ullah, A. and Shamsuddin, A. M. (1990): Carcinogenesis, 11, 2219–2222.PubMedGoogle Scholar
  121. 121.
    Vohra, P., Gray, G. A. and Kratzer, F. H. (1965): Proc. Soc. Exp. Biol., 120, 447–451.PubMedGoogle Scholar
  122. 122.
    Vucenik, I. and Shamsuddin, A. M. (1994): J. Nutr., 124, 861–868.PubMedGoogle Scholar
  123. 123.
    Vucenik, I., Yang, G. Y. and Shamsuddin, A. M. (1997): Nutr. Cancer., 28, 7–13.PubMedGoogle Scholar
  124. 124.
    Walker, K. A. (1974): Planta, 116, 91–97.Google Scholar
  125. 125.
    Wang, L. C. (1971): Cereal Chem., 48, 229–234.Google Scholar
  126. 126.
    Wolf, W. J. and Briggs, D. R. (1958): Arch. Biochem. Biophys., 85, 1986–1991.Google Scholar
  127. 127.
    Yang, G. Y. and Shamsuddin, A. M. (1995): Anticancer Res., 15, 2479–2487.PubMedGoogle Scholar
  128. 128.
    Zhou, J. R., Fordyce, E. J., Raboy, V., Dickinson, D. B., Wong, M. S., Burns, R. A. and Erdman, J. W. Jr. (1992): J. Nutr., 122, 2466–2472.PubMedGoogle Scholar
  129. 129.
    Zyta, K. (1992): World J. Microb. Biotechnol., 8, 467–472.Google Scholar
  130. 130.
    Zyta, K. (1993): World J. Microb. Biotechnol., 9, 117–119.Google Scholar

Copyright information

© Universidad de Navarra 2000

Authors and Affiliations

  • G. Urbano
    • 1
  • M. López-Jurado
    • 1
  • P. Aranda
    • 1
  • C. Vidal-Valverde
    • 1
  • E. Tenorio
    • 1
  • J. Porres
    • 1
  1. 1.Departamento de Fisiología e Instituto de Nutrición y Tecnología de AlimentosUniversidad de GranadaGranadaSpain

Personalised recommendations