Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Methods and detection limits in tracking a genetically modifiedPseudomonas sp. released in the pine phyllosphere

  • 75 Accesses

  • 2 Citations


A method suitable to detect the presence and follow the fate of specific bacteria released on the phyllosphere of conifer trees was devised, tested, and optimised. The procedure was set up using a biocontrol strain that had shown effectiveness and persistence in greenhouse trials against insect pests. The microorganism used is based on aPseudomonas sp., originally isolated fromPinus nigra and carries the cry9a toxin gene fromBacillus thuringiensis. In order to assess its detectability, specific primers were designed, and the most suitable protocol for DNA isolation from bacteria colonising pine needles was defined upon an experimental comparison of various methods. Different conditions of physical pre-treatments and their combinations with commercially available kits protocols were tested. The most sensitive monitoring (about 102 released cells) was achieved by a procedure based on vortexing in a suspension of glass beads followed by the use of microcolumns designed for a soil DNA extraction kit. The application can be recommended in biosafety studies of released GMMs as well as in ecological surveys of phyllosphere microbiota.

This is a preview of subscription content, log in to check access.


  1. Alberghini S., Filippini R., Marchetti E., Dindo M.L., Shevelev A.B., Battisti A., Squartini A. (2005). Construction of aPseudomonas sp. derivative carrying the Cry9Aa gene fromBacillus thuringiensis and proposal of new standard criteria to assess entomocidal properties of bacteria. Res Microbiol. 156: 690–699.

  2. Alberghini S., Filippini R., Shevelev A.B., Battisti A., Squartini A. (2006). Extended plant protection by an epiphyticPseudomonas sp. derivative carrying the cry9Aa gene fromBacillus thuringiensis galleriae against the pine processionary mothThaumetopoea pityocampa. Biocontrol Science and Technol., 16: 709–715.

  3. Barth P.T. (1979). RP4 and R300B as wide-host-range plasmid cloning vehicles. in: Plasmids of Medical, Environmental and Commercial Importance (Timmis K.N., and Pühler A., Eds.) pp. 399–410. Elsevier, Amsterdam,

  4. Beattie G.A., Lindow SE (1999). Bacterial colonization of leaves: A spectrum of strategies. Phytopathol., 89: 353–359.

  5. Charity J.A., Klimaszewska K. (2005). Persistence ofAgrobacterium tumefaciens in transformed conifers. Environ. Biosafety Res., 4: 167–177.

  6. Corich V., Giacomini A., Ollero F.J., Squartini A., Nuti M.P. (1991). Pulsed-field electrophoresis in contour clamped homogeneous electric field (CHEF) for the fingerprinting ofRhizobium sp. FEMS Microbiol. Lett., 83: 193–198.

  7. Corich V., Bosco F., Giacomini A., Basaglia M., Squartini A., Nuti M.P. (1996). Fate of genetically modifiedRhizobium leguminosarum biovarviciae during long-term storage of commercial inoculants. J. Appl. Bacteriol., 81: 319–328.

  8. Corich V., Giacomini A., Basaglia M., Vendramin E., Vian P., Carlot M., Basaglia M., Squartini A., Casella S., Nuti M.P. (2001a). Aspects of marker/reporter stability and selectivity in soil microbiology. Microb. Ecol., 41: 333–340.

  9. Corich V., Giacomini A., Carlot M., Simon R., Tichy H.V., Squartini A., Nuti M.P. (2001b). Comparative strain-typing ofRhizobium leguminosarum bv.viciae natural populations. Can. J. of Microbiol., 47: 580–584.

  10. Corich V., Giacomini A., Vendramin E., Vian P., Carlot M., Concheri G., Polone E., Casella S., Nuti M.P., Squartini A. (2007). Long term evaluation of field-released genetically modified rhizobia. Environ. Biosafety Res., 6: 167–181.

  11. Cullen D.W., Nicholson P.S., Mendum T.A., Hirsch P.R. (1998). Monitoring genetically-modified rhizobia in field soils using the polymerase chain reaction. J. Appl. Microbiol. 84: 1025–1034.

  12. Donegan K., Matyac C., Seidler R., Porteous A. (1991). Evaluation of methods for sampling, recovery, and enumeration of bacteria applied to the phylloplane. Appl Environ Microbiol., 57: 51–56.

  13. Giacomini A., Ollero F.J., Squartini A., Nuti M.P. (1994). Construction of multipurpose gene cartridges based on a novel synthetic promoter for high-level gene expression in Gram-negative bacteria. Gene, 144: 17–24.

  14. Heuer H., Smalla K. (2007). Horizontal gene transfer between bacteria. Environ. Biosafety Res. 6: 3–13.

  15. Hirsch P.R. (1996). Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol., 133: 159–171.

  16. Jansson J., Van Elsas J.D., Bailey M. (Eds.) (2000) Tracking genetically engineered microorganisms, Landes Biosciences, Georgtown TX USA.

  17. Lindow S.E., Brandl M.T. (2003). Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 69: 1875–1883.

  18. Miethling R., Tebbe C. (2004). Resilience of a soil-established, genetically modifiedSinorhizobium meliloti inoculant to soil management practices. Appl. Soil Ecol., 25: 161–167.

  19. Naseby D.C., Lynch J.M. (1998). Impact of wild type and genetically modifiedPseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol. Ecol., 7:617–625.

  20. Nuti M.P., Russo A., Toffanin A., Casella S., Corich V., Squartini A., Giacomini A., Peruch U., Basaglia M. (2003). What did we learn from 24 field releases of GMMs in Italy? In: Lelley T., Balasz E., Tepfer M. (Eds.), Ecological Impact of GMO Dissemination in Agro-Ecosystems. Facultas Verlags, Vienna, pp. 45–54.

  21. Nuti M.P., Squartini A., Giacomini A. (1994). European Community regulation for the use and release of genetically modified organisms (GMOs) in the environment. In: O’Gara F., Dowling D., Boesten B. (Eds.) Molecular Ecology of Rhizosphere Microorganisms. VCH Publ., Weinheim, Germany, pp. 165–173.

  22. Picard C., Ponsonnet C., Paget E., Nesme X., Simonet P., (1992). Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl. Environ Microbiol. 58: 2717–2722.

  23. Schena L., Finetti Sialer M., Gallitelli D. (2002). Molecular detection of strain L47 ofAureobasidium pullulans, a biocontrol agent of postharvest diseases. Plant Dis. 86: 54–60.

  24. Yoshimura F. (1982). Phylloplane bacteria in a pine forest. Can. J. Microbiol., 28: 580–592.

Download references

Author information

Correspondence to Andrea Squartini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alberghini, S., Battisti, A. & Squartini, A. Methods and detection limits in tracking a genetically modifiedPseudomonas sp. released in the pine phyllosphere. Ann. Microbiol. 58, 163–167 (2008). https://doi.org/10.1007/BF03179462

Download citation

Key words

  • Pseudomonas sp.
  • GMM
  • detection limits
  • phyllosphere
  • Pinus