Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Screening of plant growth promoting traits ofBacillus thuringiensis


This study aimed to evaluate the plant growth promoting (PGP) potential ofBacillus thuringiensis. In this context, several genetic determinants of factors implicated in PGP potential were investigated by polymerase chain reaction (PCR) in 16B. thuringiensis strains of different origin and belonging to different subspecies. PCR screening was performed on acid phosphatase, phytase, siderophore biosynthesis protein, 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indolpyruvate decarboxylase (ipdC). Production of indol acetic acid (IAA)-like compounds and of ACC deaminase, and capability of solubilising mineral phosphate were investigated by phenotypic tests. All the strains were PCR positive for the presence of the siderophore biosynthesis protein, ACC deaminase and acid phosphatase genes. Five and seven strains gave an amplicon with the expected length for the phytase andipdC genes respectively. All the strains produced IAA compounds and seven had a high capacity to solubilise inorganic phosphorous. Qualitative phenotypic test for ACC deaminase activity showed that seven strains are able to grow on salt minimal medium containing ACC as sole nitrogen source, indicating the expression of theaccd genes. Our screening results in thirteen strains having more than one PGP trait and showed thatB. thuringiensis harbours and expresses several PGP determinants that could be very interesting in field application to enhance the plant growth. To our knowledge, this is the first report on the multiple plant growth promoting potential ofB. thuringiensis.

This is a preview of subscription content, log in to check access.


  1. Arora N., Ahmad T., Rajagopal R., Bhatnagar R.K. (2003). A constitutively expressed 36 kDa exochitinase fromBacillus thuringiensis HD-1. Biochem. Biophys. Res. Commun., 307: 620–625.

  2. Belimov A.A., Hontzeas N., Safronova V.I., Demchinskaya S.V., Piluzza G., Bullitta S., Glick B.R. (2005). Cadmium-tolerant plant growth-promoting bacteria associatedwith the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem., 37: 241–250.

  3. Bloemberg G.V., Lugtenberg B.J.J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant. Biol., 4: 343–350.

  4. Brandl M.T., Lindow S.E. (1996). Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis inErwinia herbicola. Appl. Environ. Microbiol., 62: 4121–4128

  5. Cendrowski S., MacArthur W., Hanna P. (2004).Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol., 51: 407–417.

  6. Chattopadhyay A., Bhatnagar N.B., Bhatnagar R. (2004). Bacterial insecticidal toxins. Crit. Rev. Microbiol., 30: 33–54.

  7. Cherif A., Chehimi S., Limem F., Rokbani A., Hansen B.M., Hendriksen N.B., Daffonchio D., Boudabous A. (2003). Purification and characterization of the novel bacteriocin entomocine 9, and safety evaluation of its producer,Bacillus thuringiensis subsp.entomocidus HD9. J. Appl. Microbiol., 95: 990–1000.

  8. Daffonchio D., Cherif A., Borin S. (2000). Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the ‘Bacillus cereus group’. Appl. Environ. Microbiol. 66: 5460–5468.

  9. Dong Y.-H., Xu J.-L., Li X.-Z., Zhang L.-H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA, 97: 3526–3531.

  10. Dworkin M., Foster J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75: 592–601.

  11. Fujino A., Ose T., Yao M., Tokiwano T., Honma M., Watanabe N., Tanaka I. (2004). Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue fromPyrococcus horikoshii. J. Mol. Biol. 341: 999–1013.

  12. Glick B.R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251: 1–7.

  13. Glickmann E., Gardan L., Jacquet S., Hussain S., Elasri M., Petit A., Dessaux Y. (1998). Auxin production is a common feature of most pathovars ofPseudomonas syringae. Molecular Plant-Microbe Interact., 11: 156–162.

  14. Gordon S.A., Weber R.P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiol., 26: 192–195.

  15. Grichko V.P., Glick B.R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39:11–17.

  16. Hoffmaster A.R., Ravel J., Rasko D.A., Chapman G.D., Chute M.D., Marston C.K., De B.K., Sacchi C.T., Fitzgerald C., Mayer L.W., Maiden M.C.J., Priest F.G., Barker M., Jiang L., Cer R.Z., Rilstone J., Peterson S.N., Weyant R.S., Galloway D.R., Rea, T.D., Popovic T., Fraser C.M. (2004). Identification of anthrax toxin genes in aBacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. U.S.A., 101: 8449–8454.

  17. Hontzeas N., Zoidakis J., Glick B.R., Abu-Omar M.M. (2004). Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacteriumPseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim. Biophys. Acta, 1703: 11–19.

  18. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N., Lapidus A., Chu L., Mazur M., Goltsman E., Larsen N., D’Souza M., Walunas T., Grechkin Y., Pusch G., Haselkorn R., Fonstein M., Ehrlich S.D., Overbeek R., Kyrpides N. (2003). Genome sequence ofBacillus cereus and comparative analysis withBacillus anthracis. Nature, 423: 87–91.

  19. Masalha J., Kosegarten H., Elmaci Ö., Mengel K. (2000). The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Fertil. Soils, 30: 433–439.

  20. Mayak S., Tirosh T., Glick B.R. (2004a). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem., 42: 565–572.

  21. Mayak S., Tirosh T., Glick B.R. (2004b). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci., 166: 525–530.

  22. Mehta S., Nautiyal C.S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol., 43: 51–56.

  23. Nautiyal C.S., Bhadauria S, Kumar P., Lal H., Mondal R., Verma D. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett., 182: 291–296.

  24. Park R-Y., Choi M.-H., Shin S.-H. (2005). Production of catechol-siderophore and utilization of transferrin-bound iron inBacillus cereus. Biol. Pharm. Bull., 28: 1132–1135.

  25. Patten C.L., Glick B.R. (2002). Role ofPseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68: 3795–3801.

  26. Penrose D.M., Glick B.R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118: 10–15.

  27. Penrose D.M., Moffatt B.A., Glick B.R. (2001). Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can. J. Microbiol., 47: 77–80.

  28. Raddadi N., Cherif A., Mora D., Brusetti L., Borin S., Boudabous A., Daffonchio D. (2005). The autolytic phenotype of theBacillus cereus group. J. Appl. Microbiol., 99: 1070–1081.

  29. Raddadi N., Cherif A., Ouzari H., Marzorati M., Brusetti L., Boudabous A., Daffonchio D. (2007).Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Ann. Microbiol., 57: 481–494.

  30. Rasko D.A., Ravel J., Økstad O.A., Helgason E., Cer R.Z., Jiang L., Shores K.A., Fouts D.E., Tourasse N.J., Angiuoli S.V., Kolonay J., Nelson W.C., Kolstø A.B., Fraser C.M., Read, T.D., (2004). The genome sequence ofBacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related toBacillus anthracis pXO1. Nucl. Ac. Res., 32: 977–988.

  31. Read T.D., Peterson S.N., Tourasse N., Les Baillie W., Paulsen I.T., Nelson K.E., Tettelin H., Fouts D.E., Eisen J.A., Gill S.R., Holtzapple E.K., Økstad O.A., Helgason E., Rilstone J., Wu M., Kolonay J.F., Beanan M.J., Dodson R.J., Brinkac L.M., Gwinn M., DeBoy R.T., Madpu R., Daugherty S.C., Durkin A.S., Haft D.H., Nelson W.C., Peterson J.D., Pop M., Khouri H.M., Radune D., Benton J.L., Mahamoud Y., Jiang L., Hance I.R., Weidman J.F., Berry K.J., Plaut R.D., Wolf A.M., Watkins K.L., Nierman W.C., Hazen A., Cline R., Redmond C., Thwaite J.E., White O., White O., Salzberg S.L., Thomason B., Friedlander A.M., Koehler T.M., Hanna P.C., Kolstø A.-B., Fraser C.M. (2003). The genome sequence ofBacillus anthracis Ames and comparison to closely related bacteria. Nature, 423: 81–86.

  32. Rodriguez H., Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17: 319–339.

  33. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean, D.H. (1998).Bacillus thuringiensis and its pesticidal proteins. Microbiol. Mol. Biol. Rev., 62: 775–806.

  34. Schutz A., Golbik R., Tittman K., Svergun D.I., Koch M.H.J., Hubner G., Konig S. (2003). Studies on structure-function relationships of indolepyruvate decarboxylase fromEnterobacter cloacea, a key enzymeof the indole acetic acid pathway. Eur. J. Biochem., 270: 2322–2331.

  35. Schwalm K., Aloni R., Langhans M., Heller W., Stich S., Ullrich C.I. (2003). Flavonoid-related regulation of auxin accumulation inAgrobacterium tumefaciens-induced plant tumors. Planta, 218: 163–178.

  36. Stabb E.V., Jacobson L.M., Handelsman J. (1994). Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl. Environ. Microbiol., 60: 4404–4412.

  37. Sharma A., Johri B.N., Sharma A.K., Glick B.R. (2003). Plant growth-promoting bacteriumPseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem., 35: 887–894.

  38. Wang C., Knill E., Glick B.R., Defago G. (2000). Effect of transferring 1-aminocyclopropoane-1-carboxylic acid (ACC) deaminase genes intoPseudomonas fluorescens strain CH40 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol., 46: 898–907.

  39. Wilson M.K., Abergel R.J., Raymond K.N., Arceneaux J.E.L., Byers B.R. (2006). Siderophores ofBacillus anthracis, Bacillus cereus andBacillus thuringiensis. Biochem. Biophys. Res. Comm., 348: 320–325.

  40. Yehuda Z., Shenker M., Romheld V., Marschner H., Hador Y., Chen Y. (1996). The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plant. Plant Physiol., 112: 1273–1280.

Download references

Author information

Correspondence to Daniele Daffonchio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raddadi, N., Cherif, A., Boudabous, A. et al. Screening of plant growth promoting traits ofBacillus thuringiensis . Ann. Microbiol. 58, 47–52 (2008). https://doi.org/10.1007/BF03179444

Download citation

Key words

  • Bacillus thuringiensis
  • PGPR
  • IAA
  • ACCD