Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biological control of one species belonging to the dominant mycobiota of rice of Valencia

Abstract

The possible biological control of the seed-associated fungus,Nigrospora oryzae byTrichoderma harzianum under different environmental conditions was investigated. A study of the fungal growth in dual cultures revealed thatT. harzianum inhibited by contactN. oryzae at all testing temperatures and water activities tested except at 0.95a w and 15 °C, whereT. harzianum inhibited pathogen growth before hyphal contact and exhibited an inhibition zone between the colonies of both fungi. Suppression of the sporulation, loss of turgor and cell collapse, wall’s disintegration, coiling and penetration ofT. harzianum around different structures ofN. oryzae were observed by cryo-scanning electron microscopy. The effect of abiotic factors water activity and temperature on fungal growth was determined.

This is a preview of subscription content, log in to check access.

References

  1. Abdel-Fattah G.M., Shabana Y.M., Ismail A.E., Rashad Y.M. (2007).Trichoderma harzianum: a biocontrol agent againstBipolaris oryzae. Mycophatologia, 164: 81–89.

  2. Akai S., Kuramoto T. (1968). Microorganisms existing on leaves of rice plant and the occurrence of brown leaf spot. Annals of the Phytopathological Society of Japan, 34: 313–316.

  3. Binod P., Sukumaran R.K., Shirke S.V., Rajput J.C., Pandey A. (1997). Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent againstHelicoverpa armigera. J. Appl. Microbiol., 103: 1845–1852.

  4. Chakrabarti N.K., Chaudhari R. (1992). Brown spot of rice in U.S. In: Singh U.S., Mukhopadhyay N., Kumar J., Chaube H.S., Eds. Plant Diseases of International Importance, Vol. 1: Diseases of Cereals and Pulses, 2nd edn., Prentice-Hall Inc., USA, pp. 116–129.

  5. Cook R.J. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol., 31: 53–80.

  6. Davanlou M., Madsen A.M., Madsen C.H., Hockenhull J. (1999). Parasitism of macrononidia, chlamydospores and hyphae ofFusarium culmorum by mycoparasiticPythium species. Plant Pathol., 48: 352–359.

  7. Dennis C., Webster J. (1971a). Antagonistic properties of species groups ofTrichoderma. II: Production of volatile antibiotics. Trans. Brit. Mycol. Soc., 57: 40–48.

  8. Dennis C., Webster J. (1971b). Antagonistic properties of species groups ofTrichoderma. III: Hyphal interaction. Trans. Brit. Mycol. Soc., 57: 363–369.

  9. Dubey S.C., Suresh M., Singh B. (2007). Evaluation ofTrichoderma species againstFusarium oxysporum f. sp.ciceris for integrated management of chickpea wilt. Biol. Control, 40: 118–127.

  10. Elad Y., Barak R., Chet I. (1983). Possible role of lectins in mycoparasitism. J. Bacteriol., 154 (3): 1431–1435.

  11. Elad Y., Kapat A. (1999). Role ofTrichoderma harzianum protease in the biocontrol ofBotrytis cinerea. Eur. J. Plant Pathol., 105: 177–189.

  12. Ezziyyani M., Pérez C., Ahmed A.S., Requena M.E., Candela M.E. (2004).Trichoderma harzianum como biofungicida para el biocontrol dePhytophthora capsici en plantas de pimiento (Capsicum annuum L.). Anales de Biología, 26: 35–45.

  13. Fresco L. (2005). “Rice is life”. J. Food Comp. Anal., 18: 249–253.

  14. Gokulapalan C., Nair M.C. (1986). Mycoparasites ofRhizoctonia solani and control of sheath blight of rice, (abstract) Fourteenth Annual Meeting of the Mycological Society of India and Seminar on Applied Micology, Thanjavur, India, p. 18.

  15. Golam Mortuza M., Ilag L.L. (1999). Potential for biocontrol ofLasiodiplodia theobromae (Pat.) Griff. & Maubl. in banana fruits byTrichoderma species. Biol. Control, 15: 235–240.

  16. Gupta V.P., Tewari S.K., Govindaiah, Bajpai A.K. (1999). Ultrastructure of mycoparasitism ofTrichoderma, Gliocladium andLaetisaria species onBotryodiplodia theobromae. J. Phytopathol., 147: 19–24.

  17. Han J., Sun L., Dong X., Cai Z., Sun X., Yang H., Wang Y., Song W. (2005). Characterization of a novel plant growth-promoting bacteria strainDelftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol., 28 (1): 66–76.

  18. Handelsman J., Stabb K. (1996). Biocontrol of soilborne plant pathogens. Plant Cell, 8: 1855–1869.

  19. Hermosa M.R., Grondona I., Iturriaga E.A., Diaz-Minguez J.M., Castro C., Monte E., Garcia-Acha I. (2000). Molecular characterization and identification of biocontrol isolates ofTrichoderma spp. Appl. Environ. Microbiol., 66 (5): 1890–1898.

  20. Hervás A., Landa B., Datnoff L.E., Jiménez-Díaz R.M. (1998). Effects of commercial and indigenous microorganisms onFusarium wilt development in chickpea. Biol. Control, 13: 166–176.

  21. Hjeljord L., Tronsmo A. (1998).Trichoderma andGliocladium in biocontrol: an overview. In: Kubicek C.P., Harman G.E., Eds,Trichoderma andGliocladium. Taylor & Francis, Ltd., London, United Kingdom, pp. 135–151.

  22. Inbar J., Chet I. (1994). A newly isolated lectin from the plant pathogenic fungusSclerotium rolfsii: Purification, characterization and role in mycoparasitism. Microbiology, 140: 651–657.

  23. Kapat A., Zimand G., Elad Y. (1998). Effect of two isolates ofTrichoderma harzianum on the activity of hydrolytic enzymes produced byBotrytis cinerea. Physiol. Mol. Plant Path., 52: 127–137.

  24. Khush G.S. (1997). Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol., 35: 25–34.

  25. Kim J.K., Jang I.C., Wu R., Zuo W.N., Boston R.S., Lee Y.H., Ahr I.P., Nahm B.H. (2003). Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res., 12: 475–484.

  26. Köhl J., Fokkema N.J. (1998). Strategies for biological control of necrotrophic fungal pathogens. In: Boland G.J., Kuykendall L.D., Eds, Plant-microbe interactions and biological control, M. Dekker Inc., New York, pp. 49–88.

  27. Krishnamurthy K.S.S., Gnanamanickam S.S. (1998). Biological control of rice blast byPseudomonas fluorescens strain Pf7-14: Evaluation of a marker gene and formulations. Biol. Control, 13: 158–165.

  28. Lorito M., Harman G.E., Hayes C.K., Broadway R.M., Tronsmo A., Woo S.L., Di Pietro A. (1993a). Chitinolytic enzymes produced byTrichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology, 83: 302–307.

  29. Lorito M., Di Pietro A., Hayes C.K., Woo S.L., Harman G.E. (1993b). Antifungal, synergistic interaction between chitinolytic enzymes fromTrichoderma harzianum andEnterobacter cloacae. Phytopathology, 83: 721–728.

  30. Limón M.C., Chacón M.R., Mejías R., Delgado-Jarana J., Rincón A.M., Codón A.C., Benítez T. (2004). Increased antifungal and chitinase specific activities ofTrichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl. Microbiol. Biotechnol., 64: 675–685.

  31. Madi L., Katan T., Katan J., Henis Y. (1997). Biological control ofSclerotium rolfsii andVerticillium dahliae byTalaromyces flavus is mediated by different mechanisms. Phytopathology, 87 (10): 1054–1060.

  32. Magan N., Lacey J. (1984). The effect of water activity, temperature and substrate on interactions between field and storage fungi. Trans. Brit. Mycol. Soc., 82: 83–93.

  33. Massart S., Jijakli H.M. (2006). Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: A review. J. Microbiol. Meth., 69: 229–241.

  34. Morandi M.A.B., Maffia L.A., Mizubuti E.S.G., Alfenas A.C., Barbosa J.G. (2003). Suppression ofBotrytis cinerea sporulation byClonostachys rosea on rose debris: a valuable component in Botrytis blight management in commercial green-houses. Biol. Control, 26: 311–317.

  35. Moussa T.A.A. (2002). Studies on biological control of sugarbeet pathogenRhizoctonia solani Kühn. OnLine Journal of Biological Sciences 2 (12): 800–804.

  36. Nagarajkumar M., Bhaskaran R., Velazhahan R. (2004). Involvement of secondary metabolites and extracellular lytic enzymes produced byPseudomonas fluorescens in inhibition ofRhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res., 159: 73–81.

  37. Nagarajkumar M., Jayaraj J., Muthukrishnan S., Bhaskaran R., Velazhahan R. (2005). Detoxification of oxalic acid byPseudomonas fluorescens strain PfMDU2: Implications for the biological control of rice sheath blight caused byRhizoctonia solani. Microbiol. Res., 160: 291–298.

  38. Neethling D., Nevalainen H. (1996). Mycoparasitic species ofTrichoderma produce lectins. Can. J. Microbiol., 42 (2): 141–146.

  39. Omero C., Inbar J., Rocha-Ramírez V., Herrera-Estrella A., Chet I., Horwitz B.A. (1999). G protein activators and cAMP promote mycoparasitic behaviour inTrichoderma harzianum. Mycol. Res., 103: 1637–1642.

  40. Piñeiro F., García J. (2000). La sanidad en el arrozal valenciano. Enfermedades. Vida Rural, 108: 26–30.

  41. Punja Z.K., Utkhede R.S. (2003). Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol., 21 (9): 400–407.

  42. Rodriguez-Kabana R., Kelley W.D., Curl E.A. (1978). Proteolytic activity ofTrichoderma viride in mixed culture withSclerotium rolfsii in soil. Can. J. Microbiol., 24: 487–490.

  43. Rosales A.M., New T.W. (1982). Antagonistic effects of soil microorganisms on rice sheath blight pathogen. International Rice Research Newsletter, 7:12–13.

  44. Roy A.K., Sayre R.M. (1984). Electron microscopical studies ofTrichoderma harzianum andT. viride and mycoparasitic activity of the former onRhizoctonia solani f. sp.sasakii. Indian Pytopath., 37: 710–712.

  45. Rush M.C., Shahjahan A.K.M., Groth D.E., Jones J.P. (1998). Biological control of sheath blight disease of rice (abstract), 27th Rice Technical Working Meeting, Reno, NV. March 1–3, pp. 112–114.

  46. Sakthivel N., Sivamani E., Unnamalai N., Gnanamanickam S.S. (1986). Plant growth-promoting rhizobacteria in enhancing plant growth and suppressing plant pathogens. Curr. Sci., 55: 22–25.

  47. Sakthivel N., Gnanamanickam S.S. (1986a). Toxicity ofPseudomonas fluorescens towards rice sheath rot pathogen,Acrocylindrium oryzae Saw., Curr. Sci., 55: 106–107.

  48. Sakthivel N., Gnanamanickam S.S. (1986b). Bacterization of rice withPseudomonas fluorescens reduces sheath rot infection. Int. Rice Res. Newslett., 11: 17–18.

  49. Santamarina P., Serna R., Asensi C., Roselló J. (2002). Evolución de la micoflora del arroz durante el periodo de almacenamiento. Phytoma, 142: 113–117.

  50. Santamarina M.P., Roselló J. (2006). Influence of temperature and water activity on the antagonism ofTrichoderma harzianum toVerticillium andRhizoctonia. Crop Prot., 25: 1130–1134.

  51. Sempere F., Santamarina M.P. (2006a). Ecofisiología deDrechslera oryzae Subram. & Jain en condicionesin vitro. Phytoma, 178: 49–50.

  52. Sempere F., Santamarina M.P. (2006b) Microscopic and macroscopic study of the interaction betweenAlternaria alternata (Fr.) Keissler andNigrospora oryzae (Berk. & Broome) Petch. Ann. Microbiol., 56: 101–107.

  53. Sempere F., Santamarina M.P. (2007a).In vitro biocontrol analysis ofAlternaria alternata (Fr.) Keissler under different environmental conditions. Mycopathologia, 163: 183–190.

  54. Sempere F., Santamarina M.P. (2007b). Suppression ofNigrospora oryzae (Berk. & Broome) Petch by an aggressive mycoparasite and competitor,Penicillium oxalicum Currie & Thom. Int. J. Food Microbiol., Article in press. doi: 10.1016/j.ijfoodmicro.2007.11.080.

  55. Sonnenbichler J., Jurgen D., Peipp H. (1994). Secondary fungal metabolites and their biological activities. V. Investigations concerning the induction of the biosynthesis of toxic secondary metabolites in basidiomycetes. Biol. Chem. Hoppe-Seyler, 375: 71–79.

  56. Suarez B., Rey M., Castillo P., Monte E., Llobell A. (2004). Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agentTrichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. Microbiol. Biotechnol., 65: 46–55.

  57. Sutton J.C., Peng G. (1993). Biocontrol ofBotrytis cinerea in strawberry leaves. Phytopathology, 83: 615–621.

  58. Sutton J.C., Li D.W., Peng G., Yu H., Zhang P., Valdebenito-Sanhueza R.M. (1997).Gliocladium roseum, a versatile adversary ofBotrytis cinerea in crops. Plant Dis., 81: 316–328.

  59. Thangavelu R., Palaniswami A., Velazhahan R. (2004) Mass production ofTrichoderma harzianum for managing fusarium wilt of banana. Agricult. Ecosys. Environ., 103: 259–263.

  60. Tian X.L., Cao L.X., Tan H.M., Zeng Q.G., Jia Y.Y., Han W.Q., Zhou S.N. (2004). Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activitiesin vitro. World J. Microbiol. Biotechnol., 20: 303–309.

  61. Torres M.R., Ramos A.J., Soler J., Sanchis V., Marín S. (2003). SEM study of water activity and temperature effects on the initial growth ofAspergillus ochraceus, Alternaria alternata andFusarium verticillioides on maize grain. Int. J. Food Microbiol., 81: 185–193.

  62. Viterbo A., Montero M., Ramot O., Friesem D., Monte E., Llobell A., Chet I. (2002). Expression regulation of the endochitinase chit36 fromTrichoderma asperellum (T. harzianum T-203). Curr. Genet., 42: 114–122.

  63. Whipps J.M. (2001). Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot., 52: 487–511.

  64. Zadwormy M., Werner A., Idzikowska K. (2004). Behaviour of the hyphae ofLaccaria laccata in the presence ofTrichoderma harzianum in vitro. Mycorrhiza, 14: 401–405.

  65. Zimand G., Elad Y., Chet I. (1996) Effect ofTrichoderma harzianum onBotrytis cinerea pathogenicity. Phytopathology, 86: 1255–1260.

Download references

Author information

Correspondence to Francisca Sempere.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sempere, F., Santamarina, M.P. Biological control of one species belonging to the dominant mycobiota of rice of Valencia. Ann. Microbiol. 58, 7–14 (2008). https://doi.org/10.1007/BF03179438

Download citation

Key words

  • mycoparasitism
  • Nigrospora oryzae
  • Index of Dominance
  • rice
  • Trichoderma harzianum
  • water activity