Metals and Materials International

, Volume 7, Issue 6, pp 605–611 | Cite as

RETRACTED ARTICLE: Self-Diagnosis of GFRP composites containing carbon powder and fiber as electrically conductive phases

  • Soon-Gi Shin


The electrical characteristics of glass fiber reinforced plastic (GFRP) composites have been investigated in order to incorporate a self-diagnosis function suitable for monitoring the health of structural materials. The electrical conductivity was introduced by adding carbon powder (CP) or carbon fibers (CF) into GFRP rods and sheets. The self-diagnosis ability of the composites was evaluated by measuring the change in electrical resistance as a function of stress (or strain) in tensile tests. The resistance of CFGFRP changed only slightly at small strain levels and increased nonlinearly with the applied stress due to cutting of the fibers at higher levels. CPGFRP showed high sensitivity to stress and the resistance changed linearly over a wide strain range. During cyclic loading tests, a residual resistance was also observed in CPGFRP composites after unloading. The residual resistance increased with maximum applied strain, showing that it can be used as an indicator of previously applied strain or stress. It is concluded that the CPGFRP composite is a promising material for simple diagnosis of dynamic damage and cumulative strain.


self-diagnosis CPGFRP composites electrical resistance smart materials carbon powder percolation structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Concept of Intelligent Materials and Guidelines on their R & D Promotion, Vol. 30, Science and Technology Agency in Japan (1989).Google Scholar
  2. 2.
    H. Yanagida,Intelligent Materials 2, 6 (1992).Google Scholar
  3. 3.
    P. W. Chen and D. D. L. Chung,Compos B 27, 11 (1996).CrossRefGoogle Scholar
  4. 4.
    N. Muto, H. Yanagida, M. Miyayama, T. Nakatsuji and M. Sugita,J. Ceram. Soc. Jpn 45, 574 (1992).Google Scholar
  5. 5.
    N. Muto, H. Yanagida, T. Nakatsuji, M. Sugita and Y. Ohtsuka,J. Am. Ceram. Soc. 76, 875 (1993).CrossRefGoogle Scholar
  6. 6.
    H. Matsubara, M. Takada and H. Yanagida,Chemistry and Chemical Industry 49, 40 (1996).Google Scholar
  7. 7.
    Y. Arai, S. G. Shin, H. Matsubara and H. Yanagida, M. Tsujii, H. Matsubara and H. Yanagida,Ceram. Mater. Syst. Compos. Struct. 99, 511 (1998).Google Scholar
  8. 8.
    M. Takada, S-G. Shin, H. Matsubara and H. Yanagida,J. Jpn. Soc. Compos. Mater. 25, 225 (1999).CrossRefGoogle Scholar
  9. 9.
    H. Yanagida and H. Matsubara,J. Jpn. Soc. Mech. Eng. 102, 68 (1999).Google Scholar
  10. 10.
    S. G. Shin, H. Matsubara, Y. Okuhara, H. Yanagida and N. Takeda,Proc. 6th Jpn. Inter. SAMPE Symp. 2, 995 (1999).Google Scholar
  11. 11.
    Y. Okuhara, S. G. Shin, H. Matsubara, H. Yanagida,Trans. Meter. Res. Soc. Jpn. 25, 581 (2000).Google Scholar
  12. 12.
    K. J. Konsztowicz and D. Fontaine,J. Am. Ceram. Soc. 731, 2809 (1990).CrossRefGoogle Scholar
  13. 13.
    E. S. Leal and R. J. Lopes,Measurement Sci. Tech. 6, 188 (1995).CrossRefGoogle Scholar
  14. 14.
    A. D. Kersey,1st World Conf. on Structural Control, Plenary 3, p. 1 (1994).Google Scholar
  15. 15.
    S. F. Masri, M. J. Devries and R. O. Clus,J. Eng. Mech. 120, 1696 (1994).CrossRefGoogle Scholar
  16. 16.
    C. I. Merzbacher, A. D. Kersey and E. J. Friebele,Smart Mater. Struct 5, 196 (1996).CrossRefGoogle Scholar
  17. 17.
    H. Leuenberger,Advanced Powder Tech. 10, 323 (1999).CrossRefGoogle Scholar
  18. 18.
    D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd Ed., Taylor & Francis, London (1992).Google Scholar
  19. 19.
    S. Kirkpatrick,Rev. Mod. Phys. 45, 574 (1973).CrossRefGoogle Scholar
  20. 20.
    S. G. Shin,Metals and Materials Int., to be published.Google Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Soon-Gi Shin
    • 1
  1. 1.Division of Metallurgical and Materials, and Chemical EngineeringDong-A UniversityBusanSouth Korea

Personalised recommendations