Carbonates and Evaporites

, Volume 18, Issue 1, pp 10–18 | Cite as

Carbon and oxygen isotope profiles from the terminal precambrian Marwar Supergroup, Rajasthan, India

  • Anil MaheshwariEmail author
  • A. N. Sial
  • S. C. Mathur


Results of carbon and oxygen isotope studies from early Cambrian unfossiliferous carbonates belonging to the Marwar Supergroup, western Rajasthan, India are presented. The carbonates are enriched in “heavy” δ18O values (upto +6.50‰ PDB) and rules out the diagenetic modifications of isotope signals. The multiple, shortterm negative (upto −10.31‰ PDB) and positive (upto +2.80‰ PDB) carbon isotope oscillations observed in Marwar carbonates well matches with the lower Cambrian (Nemakit-Daldynian) carbonates reported world wide and these oscillations have been attributed to the result of climatic oscillations either from glaciations or from “cold house phases” that did not involve major glaciations.


Cambrian Carbon Isotope Evaporite Phosphorite Stromatolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AHARON, P., SCHIDLOWSKI, M. and SINGH, I.B., 1987, Chronostratigraphic markers in the end — Precambrian carbon isotope record of the Lesser Himalaya:Nature, v. 327, p. 699–702.CrossRefGoogle Scholar
  2. AMINI, M., 1988, Lower Cambrian phosphorites of Soltanieh and central Alborz ranges in Iran and their comparison with Mussoorie phosphorites of lower Himalaya, India. Unpublished Ph.D thesis, University of Delhi, India, 127 p.Google Scholar
  3. ASMEROM, Y., JACOBSEN, S.B., KNOLL, A.H., BUTTERFIELD, N.J., and SWETT, K., 1991, Strontium isotopic variations in Neoproterozoic seawater: Implications for crustal evolution:Geochimica et Cosmochimica Acta, v. 55, p. 2883–2894.CrossRefGoogle Scholar
  4. BANERJEE, D.M., 1986, Proterozoic and Early Paleozoic phosphorite of the Indian subcontinent:In P.J. Cook and J.H. Shergold, eds., Phosphate deposits of world, v. I, Proterozoic-Cambrian Phosphorite, Cambridge University Press, Cambridge, England, p. 70–90.Google Scholar
  5. BANERJEE, D.M., 1996, Phosphogenic events through Proterozoic and Cambrian with special reference to Proterozoic-Cambrian boundary: Department of Science and Technology Project Completion Report, Government of India (ESS/CA/A-4-03/92), 124 p.Google Scholar
  6. BANERJEE, D.M. and MAZUMDAR, A., 1999, On the late Neoproterozoic-Early Cambrian transition events in parts of east Gondwanaland.In A.B. Roy, ed., Neoproterozoic Spec. Issue, Neoproterozoic crustal evolution and India Gondwana Linkage:Gondwana Research, v. 2, no. 2, p. 199–211.CrossRefGoogle Scholar
  7. BANERJEE, D.M., STRAUSS, H., BHATTACHARYA, S.K., KUMAR, V., and MAZUMDAR, A., 1998, Isotopic composition of carbonate and sulphates, potash mineralisation and basin architecture of the Nagaur-Ganganagar evaporite basin (north-western India) and their implications on the Neoproterozoic exogenic cycle:Minerallogical Magazine, v. 62A, p. 106–107.CrossRefGoogle Scholar
  8. BARMAN, G., 1980, An analysis of the Marwar basin in the light of stromatolite study.In M.V.N. Murthy et al., eds., Workshop on stromatolites: Characteristics and utility, Geological Survey of India Miscellaneous Publication no. 44, p. 292–297.Google Scholar
  9. BERNER, R.A., 1990, Atmospheric carbon dioxide levels over Phanerozoic time:Science, v. 249, p. 1382–1386.CrossRefGoogle Scholar
  10. BRASIER, M.D., 1990, Phosphogenic event and skeletal preservation across the Precambrian-Cambrian boundary.In Phosphorite Research and Development. Geological Society Publication, v. 52, p. 289–303.Google Scholar
  11. BRASIER, M.D., 1992a, Towards a carbon isotope stratigraphy of the Cambrian System: potential of the Great Basin succession.In E.A. Hailwood and R.B. Kidd, eds., High Resolution Stratigraphy:Geological Society Special Publication (London), v. 70, p. 341–350.CrossRefGoogle Scholar
  12. BRASIER, M.D., 1992c, Global ocean-atmospheric change across the Precambrian-Cambrian transition:Geological Magazine, v. 129, p. 161–168.CrossRefGoogle Scholar
  13. BRASIER, M.D., CORFIELD, R.M., DERRY, L.A. ET AL., 1994a, Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia:Geology, v. 22, p. 455–458.CrossRefGoogle Scholar
  14. BRASIER, M.D., GREEN O.R., and SHIELDS, G., 1997, Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna:Geology, v. 25, p. 303–306.CrossRefGoogle Scholar
  15. BRASIER, M.D., KHOMENTSVSKY, V.V., and CREFIELD, R.M., 1993, Stable isotopic calibration of the earliest skeletal fossil assemblages in eastern Siberia (Precambrian-Cambrian boundary):Terra Nova, v. 5, p. 225–232.CrossRefGoogle Scholar
  16. BRASIER, M.D., MAGARITZ, M., CORFIELD, R., HULIN, L., XICHE, W., LIN, O., ZHIWEN, J., HAMDI, B., TINGGUI, H.E., and FRASIER, A.G., 1990, The carbon and oxygen isotopic record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation:Geological Magazine, v. 127, p. 319–332.CrossRefGoogle Scholar
  17. BRASIER, M.D. and McILROY, D., 1998, Neonereites uniserialis from c. 600 Ma year old rocks in western Scotland and the emergence of animals:Journal Geological Society (London), v. 155, p. 5–12.CrossRefGoogle Scholar
  18. BRASIER, M.D., ROZANOV, A.Yu., ZHURAVLEV, A.Yu.,et al., 1994b, a carbon isotope reference scale for the Lower Cambrian succession in Siberia:Geological Magazine, v. 131, p. 767–783.CrossRefGoogle Scholar
  19. BRASIER, M.D., SHIELDS, G., KULESHOV, V.N., and ZHEGALLO, Le.A., 1996, Carbon and oxygen isotope stratigraphy of the terminal Proterozoic to early Cambrian, west Mongolia:Geological Magazine, v. 133, p. 445–485.CrossRefGoogle Scholar
  20. BRASIER, M.D. and SUKHOV, S.S., 1997, The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: Northern Siberia data:Canadian Journal of Earth Sciences, v. 35, p. 353–373.CrossRefGoogle Scholar
  21. BUDAI, J.M., LOHMANN, K.C., and WILSON, J.L., 1987, Dolomitization of the Madison Group, Wyoming and Utah overthrust belt:AAPG Bulletin, v. 71, p. 909–924.Google Scholar
  22. BURNS, S.J., and MATTER, A., 1993. Carbon isotopic record of the latest Proterozoic from Oman:Ecologae Geological Helv, v. 86, p. 595–607.Google Scholar
  23. CHAKRABORTY, C. and FRIEDMAN, G.M., 1998, Stable isotopes in Marinecarbonates: Their implications for the paleoenvironment with specialreference to the Proterozoic Vindhyan Carbonates (Central India):Journal of the Geological Society of India, v. 51, p. 415–416.Google Scholar
  24. CHAUHAN, D.S., 1996, The pattern and process of sedimentation in the lower Palaeozoic Marwar basin, A geological synthesis: Abstract Proceedings Seminar, Geological evolution of western Rajasthan, Dept. Geol., J.N.V. University, Jodhpur, p. 31–32.Google Scholar
  25. CHAUHAN, D.S., 1999, Tectonic and sedimentary evolution of the Marwar basin: A Neoproterozoic-Early Cambrian intracratonic sag basin.In P. Kataria, ed., Proceedings of the Seminar on Geology of Rajasthan-Status and perspective (A.B.Roy Felicitation Volume), Udaipur, p. 111–125.Google Scholar
  26. CRAIG, H., 1957, Isotope standard for carbon and oxygen and correction factors for mass spectrometry analysis of carbon dioxide:Geochimica et Cosmochimica Acta, v. 12, p. 133–149.CrossRefGoogle Scholar
  27. DASS GUPTA, S.P., VIRENDRA KUMAR, RAM CHANDRA, and JAIRAM, M.S., 1988, A framework of the Nagaur-Ganganagar evaporite basin, Rajasthan:Indian Minerals, v. 42, no. 1, p. 57–64.Google Scholar
  28. DERRY, L.A., KAUFMAN, A.J., and JACOBSEN, S.B., 1992, Sedimentary cycling and environmental changes in the late Proterozoic: evidences from stable and radiogenic isotopes:Geochimica et Cosmochimica Acta, v. 56, p. 1317–1329.CrossRefGoogle Scholar
  29. DES MARAIS, D.J., 1997, Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon:Organic Geochemistry, v. 27, p. 185–193.CrossRefGoogle Scholar
  30. DOLAN, P., 1990, Pakistan: a history of petroleum exploration and future potential.In J. Brooks, ed., Classic Petroleum Provinces: Geological Society Special Publication (London), v. 50, p. 503–524.Google Scholar
  31. DONNELLY, T., SHERGOLD, J.H., and SOUTHGATE, P.N., 1988, Anomalous geochemical signals from phosphatic middle Cambrian rocks in the southern Georgina Basin, Australia:Sedimentology, v. 35, p. 549–570.CrossRefGoogle Scholar
  32. FRIEDMAN, G.M. and CHAKRABORTY, C., 1997, Stable isotopes in Marinecarbonates: Their implications for the paleoenvironment with special reference to the Proterozoic Vindhyan Carbonates (Central India):Journal of Geological Society of India, v. 50, p. 131–159.Google Scholar
  33. FRIEDMAN, G.M., CHAKRABORTY, C., and KOLKAS, M., 1996, δ13 excursion in the end-Proterozoic strata of the Vindhyan basin (central India): Its chronostratigraphic significance:Carbonates and Evaporites, v. 11, p. 206–212.CrossRefGoogle Scholar
  34. GAO, G. and LAND, L.S., 1991, Geochemistry of Cambrian-Ordovician Arbuckle in Oklahoma: Implications for diagenetic δ18O alteration and secular δ13C and87Sr/86Sr variation:Geochimica et Cosmochimica Acta, v. 55, p. 2911–2920.CrossRefGoogle Scholar
  35. GONZALEZ, A. and LOHMANN, K.C., 1985, Carbon and oxygen isotopic composition of reef carbonates:Geology, v. 13, p. 811–814.CrossRefGoogle Scholar
  36. HOFFMAN, P.F., KAUFMAN, A.J., and HALVERSON, G.P., 1998, Comings and goings of global glaciations on a Neoproterozoic tropical platform in Namibia:GSA Today, v. 8, no. 5, p. 1–9.Google Scholar
  37. HSUO, K.J., OBERHANSLI, H., GAO, J.Y., SUN SHU HAIHONG, and KRANHENBUHL, U., 1985, Strangelove ocean before the Cambrian explosion:Nature, v. 316, p. 809–811.CrossRefGoogle Scholar
  38. HUDSON, J.D., 1977, Stable isotopes and limestone lithification:Journal of the Geological Society (London), v. 136, p. 137–164.Google Scholar
  39. HUSSEINI, M.I. and HUSSEINI, S.I., 1990, Origin of the Infracambrian salt basins of the Middle East. In J. Brooks, ed., Classic Petroleum Provinces: Geological Society Special Publication (London), v. 50, p. 279–292.Google Scholar
  40. KAUFMAN, A.J. and KNOLL, A.H., 1995, Neoproterozoic variations in the C-isotopic composition of sea water stratigraphic and biogeochemical implications:Precambrian Research, v. 73, p. 27–49.CrossRefGoogle Scholar
  41. KAUFMAN, A.J., KNOLL, A.H., and NARBONNE, G.M., 1997, Isotopes, ice ages and terminal Proterozoic earth history:Proceedings of National Academy of Sciences, United States of America, v. 94, p. 6600–6605.CrossRefGoogle Scholar
  42. KAUFMAN, A.J., KNOLL, A.H., SEMIKHTOV, M.A., ET AL, 1996, Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia:Geological Magazine, v. 133, p. 509–533.CrossRefGoogle Scholar
  43. KHAN, E.A., 1973, Discovery of fossil brachiopod of Cambrian affinity from Trans-Aravalli Vindhyan sequence, Jodhpur, Rajasthan: Seminar on Recent Advancements in Geology of Rajasthan and Gujarat, Jaipur, Abstract, p. 74–75.Google Scholar
  44. KIMURA, H., MATSUMOTO, R., KAKUWA, Y., HAMDI, B., and ZIBASERESHT, H., 1997, The Vendian-Cambrian δ13Crecord, North Iran: evidence for overturning of the ocean before the Cambrian explosions:Earth and Planetary Sciences, v. 147, p. 1–7.CrossRefGoogle Scholar
  45. KNOLL, A.H., BAMBACH, R.K., CANFIELD, D.E., and GROTZINGER, J.P., 1996, Comparitive Earth history and Late Permian mass extinction:Science, v. 273, p. 452–457.CrossRefGoogle Scholar
  46. KNOLL, A.H., HAYES, J.M., KAUFMAN, A.J., SWETT, K., and LAMBERT, I.B., 1986, Secular variations in carbon isotope ratios from Upper Proterozoic successions of Svalborad and East Greenland:Nature, v. 321, p. 832–838.CrossRefGoogle Scholar
  47. KNOLL, A.H., KAUFMAN, A.J., SEMIKHATOV, M.A. ET AL., 1995, Sizing up the sub-Tommotian unconformity in Siberia:Geology, v. 23, p. 1139–1143.CrossRefGoogle Scholar
  48. KONTOROCTH, A.E., MANDEL ’BAUM, M.M., SUKHOV, V.S., TROFIMUK, A.A., and ZOLOTOV, A.N., 1990, Lena-Tunguska Upper Proterozoic-Paleozoic petroleum superprovince: In J. Brooks, ed., Classic Petroleum Provinces: Geological Society Special Publication (London), v. 50, p. 473–489.Google Scholar
  49. KUMAR, B., SHARMA, S.d., SREENIVAS, B., DAYAL, A.M., RAO, M.N., DUBEY, N., and CHAWLA, B.R., 2002, Carbon, oxygen and strontium isotope geochemistry of Proterozoic carbonate rocks of the Vindhyan Basin, central India:Precambrian Research, v. 113, p. 43–63.CrossRefGoogle Scholar
  50. LOOSEVELD, R., 1996, A concise tectonic history of Oman.In A. Wood, ed., Exploration in PDO, New ideas from old basins. Petroleum Development Oman, Muscat, p. 3–26.Google Scholar
  51. MACKENZIE, F.T. and PIGGOTT, J.D., 1981, Tectonic controls of Phanerozoic sedimentary rocks recycling:Journal of Geological Society (London) v. 138, p. 183–196.CrossRefGoogle Scholar
  52. NARAYANAN, K., 1971, Problems of stratigraphy of Rajasthan Shelf. Proceedings of Symposium “Problems of Arid Zone of India”: Jodhpur, p. 92–100.Google Scholar
  53. PALIWAL, B.S., 1975, Phosphate algal stromatolite in the Trans-Aravalli Vindhyan of Badi-Khatau, district Nagaur, Rajasthan:Current Science, v. 44, no. 5, p. 161.Google Scholar
  54. PAREEK, H.S., 1981, Basin configuration and sedimentary stratigraphy of western Rajasthan:Journal of Geological Society of India, v. 22, p. 517–527.Google Scholar
  55. PAREEK, H.S., 1984, Pre-Quaternary geology and mineral resources of northwestern Rajasthan:Memoir Geological Survey India, v. 115, p. 99.Google Scholar
  56. PETERS, K.E., CLARK, M.E., DASGUPTA, U., McCAFFREY, M.A. and LEE, C.Y., 1995, Recognition of an Infracambrian source rock based on biomarkers in the Baghewala-1 oil, India:American Association of Petroleum Geology Bulletin, v. 79, p. 1481–1494.Google Scholar
  57. RATHORE, S.S., VENKATESH, T.R., and SRIVASTAVA, R.K., 1999, Rb−Sr isotope dating of Neoproterozoic (Malani Group) magmatism from Southwest Rajasthan, India: Evidence of younger Pan-African thermal event by 40Ar-39Ar studies.In A.B. Roy, ed., Neoproterozoic Crustal Evolution and India-Gondwana Linkage:Gondwana Research, v. 2, no. 2, p. 271–286.CrossRefGoogle Scholar
  58. RIPPERDAN, R.L., 1994, Global variations in carbon isotope composition during Neoproterozoic and earliest Cambrian:Annual Reviews of Earth and Planetary Science Letters, v. 22, p. 385–417.CrossRefGoogle Scholar
  59. SALTZMANN, M.R., BRASIER, M.D., RIPPERDAN, R.L., LOHMANN, K.C., and RUNNEGAR, B., 1995, A large and global positive carbon isotope excursion during the Late Cambrian: correlation with marine extinctions and sea-level fluctuations: Geological Society America, Abstracts with Programs, v. 27, p. 331.Google Scholar
  60. SCHOLE, P.A. and ARTHUR, M.A., 1980, Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool:American Association of Petroleum Geologists Bulletin, v. 64, p. 67–87.Google Scholar
  61. SHRIVASTAVA, B.P., 1992, Significant Forth Dimensional Stratigraphic Markers in paleozoic sediments of west central Rajasthan-Paleogeographic implications-Petroleum Habitat:Indian Journal of Petroleum Geology, v. 1, no. 2, p. 224–244.Google Scholar
  62. TUCKER, M.E., 1992, The Precambrian-Cambrian boundary: seawater chemistry, ocean circulation and nutrient supply in metazoan evolutions, extinction and bimineralization:Journal of the Geological Society (London), v. 49, p. 655–668.CrossRefGoogle Scholar
  63. VIRENDRA KUMAR, 1995, Eocambrian sedimentation in Nagaur-Ganganagar evaporite basin, Rajasthan. Convent. Ind. Assoc. Sedimentolo. Roorkee, India, p. 27–29.Google Scholar
  64. VIRENDRA KUMAR, 1999, Evolution and geological set up of the Nagaur-Ganganagar basin, northwestern Rajasthan.In B.S. Paliwal, ed., Geological Evolution of Northwestern India. Scientific Publishers, Jodhpur, p. 34–60.Google Scholar
  65. WANG, K., GELDSETZER, H.H.J., GOODFELLOW, W.D., and KROUSE, H.R., 1996, Carbon and sulphur isotope anomalies across the Frasnian-Famennian extinction boundary, Alberta, Canada:Geology, v. 24, p. 187–191.CrossRefGoogle Scholar
  66. ZHANG, Q., XU, D., SUN, Y., ZHENGZHONG, Y. and ZHIFANG, C., 1987, The rare event at the Precambrian-Cambrian boundary and the stratigraphic position of this boundary:Modern Geology, v. 11, p. 69–77.Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  1. 1.Department of GeologyUniversity of RajasthanJaipur-4India
  2. 2.NEG-LABISE, Dept. of GeologyFederal University of PernambucoRecifeBrazil
  3. 3.Department of GeologyJ.N.V. UniversityJodhpurIndia

Personalised recommendations