Annals of Microbiology

, 59:229 | Cite as

Antibacterial and antilarval compounds from marine bacteriumPseudomonas rhizosphaerae

  • Shu-Hua Qi
  • Ying Xu
  • Jun Gao
  • Pei-Yuan Qian
  • Si Zhang
Ecological and Environmental Microbiology Original Articles

Abstract

In order to obtain non-toxic, antifouling natural products from marine organisms, we studied on the marine bacteriumPseudomonas rhizosphaerae isolated from deep sea sediment. Bioassay-guided column chromatography techniques were used to separate and purify compounds. Extensive spectral analyses including 1D NMR spectra and GC-MS were employed for structure elucidation of the compounds. Antibacterial activity of the isolated compounds towards eight marine bacterial strains was measures by optical density, while antilarval activity was evaluated in settlement inhibition assays with laboratory-rearedBalanus amphitrite andBugula neritina larvae. In total, nine compounds including six diketopiperazine were obtained. Among them, cyclo-(Tyr-Pro), cyclo-(Tyr-Ile), cyclo-(Phe-Pro), cyclo-(Val-Pro), 3-phenyl-2-propenoic acid, and uracil had various antibacterial activities towards five marine fouling bacteria, furthermore, bis(2-ethylhexyl)phthalate, cyclo-(Tyr-Ile), cyclo-(Phe-Pro), cyclo-(Val-Pro), and 3-phenyl-2-propenoic acid showed antilarval effect on larval settlement of barnacleBalanus amphitrite and bryozoanBugula neritina. The results suggested that marine bacteriumPseudomonas rhizosphaerae could produce potent antibacterial and antilarval diketopiperazine and benzenetype secondary metabolites.

Key words

marine bacterium Pseudomonas rhizosphaerae antibacterial antilarval diketopiperazine 

References

  1. Albro P.W. (1987). The biochemical toxicology of di-(2-ethylhexyl) and related phthalates: Testicular atrophy and hepatocarcinogenesis. Rev. Biochem. Toxicol., 8: 73–119.Google Scholar
  2. Alzieu C. (1998). Impact of tributyltin on marine invertebrates. Ecotoxicology, 9: 71–76.CrossRefGoogle Scholar
  3. Brancato M.S., Woollacott R.M. (1982). Effect of microbial films on settlement of bryozoan larvae (Bugula simplex, B. Stolonifera andB. Turrita). Mar. Biol., 71: 51–56.CrossRefGoogle Scholar
  4. Brantner A., Grein E. (1994). Antibacterial activity of plant extracts used externally in traditional medicine. J. Ethnopharmacol., 44, 35–40.CrossRefPubMedGoogle Scholar
  5. Bryan J.P., Rittschof D., Qian P.Y. (1997). Settlement inhibition of bryozoan larvae by bacterial films and aqueous leachates. Bull. Mar. Sci., 61: 849–857.Google Scholar
  6. Cox C.D., Graham R. (1979). Isolation of an iron-binding compound fromPseudomonas aeruginosa. J. Bacteriol., 137: 357–364.PubMedGoogle Scholar
  7. Dahlstrom M., Martensson, L., Jonsson P., Amebrant T., Elwing H. (2002). Surface active adrenoreceptor compounds prevent the settlement of cyprid larvae ofBalanus improvisus. Biofouling, 16: 191–198.CrossRefGoogle Scholar
  8. Dobretsov S., Dahms H.U., Qian P.Y. (2006). A review: Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling, 22: 43–54.CrossRefPubMedGoogle Scholar
  9. Fdhila F., Vazquez Z., Sanchez J.L., Riguera R. (2003). dd-Diketopiperazines: antibiotics active againstVibrio anguilllarum isolated from marine bacteria associated with cultures of pectin maximus. J. Nat. Prod., 66: 1299–1301.CrossRefPubMedGoogle Scholar
  10. Gerhart D.J., Rittschof D., Mayo S.W. (1988). Chemical ecology and the search for marine antifoulants: Studies of a predatorprey symbiosis. J. Chem. Ecol., 14: 1903–1910.CrossRefGoogle Scholar
  11. Holden M.T.G., Chhabra S.R., de Nys R., Stead P., Bainton N.J., Hill P.J., Manefield M., Kumar N., Labatte M., England D., Rice S., Givskov M., Salmond G.P., Stewart G.S., Bycroft B.W., Kjelleberg S., Williams P. (1999). Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides fromPseudomonas aeruginosa and other Gram-negative bacteria. Mol. Microbiol., 33: 1254–1266.CrossRefPubMedGoogle Scholar
  12. Kelecon A. (2002). Secondary metabolites from marine microorganisms. An. Acad. Bras. Cienc., 74: 151–170.Google Scholar
  13. Kodani S., Imoto A., Mitsutani A., Murakami M. (2002). Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium,Pseudomonas sp. K44-1. J. Appl. Phycol., 14: 109–114.CrossRefGoogle Scholar
  14. Krchnak V., Weichsel A.S., Cabel D., Flegelova Z., Lebl M. (1996). Structurally homogeneous and heterogeneous synthetic combinatorial libraries. Mol. Divers., 1: 149–164.CrossRefPubMedGoogle Scholar
  15. Li D., Zhu W.M., Gu Q.Q. (2003). Structural identification and anti—tumor activity of diketopiperazines from secondary metabolites of marine-derived actinomycete H. Mar. Sci., 3l: 45–48.Google Scholar
  16. Milne P.J., Hunt A.L., Rostoll K., van der Walt J.J., Graz C.J.M. (1998). The biological activity of selected cyclic dipeptides. J. Pharm. Pharmacol., 50: 1331–1335.PubMedGoogle Scholar
  17. Prasad C. (1995). Bioactive cyclic dipeptides. Peptides, 16: 151–164.CrossRefPubMedGoogle Scholar
  18. Schmilz F.J., Vanderah I.J., Hollenbeak K.H. (l983). Metabolites from the marine spongeTedania ignis. A new atisanediol and several knowndiketopiperazines. J. Org. Chem., 48: 3941–3945.CrossRefGoogle Scholar
  19. Shanahan P., O’Sullivan D.J., Simpson P., Glennon J.D., O’Gara F. (1992). Isolation of 2,4-diacetylphloroglucinol from a fluorescent Pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol., 58: 353–358.PubMedGoogle Scholar
  20. Suzuki K., Sasaki Y., Endo N., Mihara Y. (1981). Acetic acidcatalyzed diketopiperazine synthesis. Chem. Pharm. Bull., 233-237.Google Scholar
  21. Tarus P.K., Lang’at-Thoruwa C.C., Wanyonyi A.W., Chhabra S.C. (2003). Bioactive metabolites fromTrichoderma harzianum andTrichoderma longibrachiatum. Bull. Chem. Soc. Ethiopia, 17: 185–190.Google Scholar
  22. Thiyagarajan V., Harder T., Qian P. Y. (2003). Combined effect of temperature and salinity on larval devolopment and attachment of the subtidal barnacleBalanus trigonus Darwin. J. Ex. Mar. Biol. Ecol., 287: 223–236.CrossRefGoogle Scholar
  23. Wang S.M., Tan N.H., Yang Y.B. (2004). Cyclodipeptides from the roots ofPanax notognseng. Nat. Prod. Res. Devel., 16: 383–386.Google Scholar
  24. Yu D.Q., Yang J.D. (1999). Analytical Chemistry Book, Vol. VII, Chemical industry Press, Beijing.Google Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  • Shu-Hua Qi
    • 1
  • Ying Xu
    • 2
  • Jun Gao
    • 3
  • Pei-Yuan Qian
    • 2
  • Si Zhang
    • 1
  1. 1.Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhou, Guangdong
  2. 2.Department of Biology/Coastal Marine LaboratoryHong Kong University of Science and TechnologyKowloonHong Kong SAR
  3. 3.Qingdao Institute of Biomass Energy and Bioprocess TechnologyChinese Academy of SciencesQingdao, ShandongChina

Personalised recommendations