Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Temporal binding at gamma frequencies in the brain: paving the way to epilepsy?

  • 133 Accesses

  • 26 Citations

Abstract

Fast (beta-gamma band 20-100 Hz) rhythms of electrical activity of the brain have been suggested to play an important role in perception, cognition and consciousness providing temporal binding of neural activities and allowing the formation of mental representations. The recent advances in the concept of temporal binding and their relation to the theory of neural networks (connectionism) are reviewed here as well as some experimental results concerning the intensified gamma rhythms and epilepsy. The hippocampal-neocortical gamma rhythms are extremely intense and hypersynchronous at onset of the epileptiform discharges induced by systemic kainic acid in the rat. Those gamma rhythms are followed by a slow rhythm of epileptiform spikes/sharp waves or spike-wave complexes (‘spike-wave’ activity). During spike-wave activity, gamma synchronisation is significantly decreased. A novel unifying concept is proposed which relates the associative principle of neural networks to the mechanism of temporal binding at high frequencies. It suggests that for each memory stored in an associative network there is a corresponding quasi-stable state of synchronous oscillation at some frequency within the gamma band. It also suggests that excessive temporal binding (“over-binding”) occurs at seizure onset when abnormally intensified and globally synchronous fast activity is often observed. “Over-binding” may cause the undesirable formation of false associations due to inadequate synaptic modifications. To prevent this process, spike-wave discharge develops as an extreme activation of the mechanism capable to desynchronise and eventually suppress fast activity and erase the spurious modes of activity associated with hypersynchronous gamma rhythms. Thus, spike-wave activity is suggested to be the “anti-binding” mechanism. This mechanism is also related to the spikes/sharp waves normally occurring in the brain mostly in sleep. It is qualititively similar to the “unlearning” mechanism of Crick and Mitchison presumably associated with the PG0 spikes of the REM sleep33.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Jasper, H.H. and Andrews, H.L., Electroencephalography. III.Normal differentiation of occipital and precentral regions in man., Arch Neurol Psychiatry. 39: 96–115, 1938.

  2. 2.

    Heeb, D. O.The Organisation of Behavior.Wiley.New York, 1949.

  3. 3.

    Malsburg, C. von der,The correlation theory of brain Function. Internal Report 81-2. Max-Planck-Inst. Biophys. Chem., Gottingen (1981). Reprinted. In: (eds. Domany, E., van Hemmen, J.L. & Schulten, K.),Models of Neural Networks 11. Temporal Aspects of Coding and Information Processing in Biological Systems, Springer-Verlag, New York, 95–119, 1994.

  4. 4.

    Malsburg, C. von der,Am I thinking assemblies? In: (eds. Palm, G. & Aertsen, A.), Brain Theory, Springer-Verlag, Berlin Heidelberg, 161–176, 1986.

  5. 5.

    Stryker, M.P., Cortical physiology.Is grandmother an Oscillation?, Nature. 338: 297–298, 1989.

  6. 6.

    Milner, P.M.,A model for visual shape recognition, Psychol Rev. 81: 521–535, 1974.

  7. 7.

    Crick, F.,Function of the thalamic reticular complex: the searchlight hypothesis, Proc Natl Acad Sci USA. 81: 4586–4590, 1984.

  8. 8.

    Damasio, A.R.,Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition, Cognition. 33: 25–62, 1989.

  9. 9.

    Konig, P. and Schillen, T.B.,Stimulus-dependent assembly formation of oscillatory responses: I. Synchronisation, Neural Comput. 3: 155–66, 1991.

  10. 10.

    Freeman, W. J.Mass action in the nervous system, Acad Press, New York, 1975.

  11. 11.

    Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboeck, H.J.,Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat, Biol Cybern. 60: 121–130, 1988.

  12. 12.

    Gray, C.M. and Singer, W.,Stimulus-speclfic neuronal oscillations in orientation columns of cat visual cortex, Proc Natl Acad Sci USA. 86: 1698–1702, 1989;

  13. 13.

    Engel, A.K., Konig, P., Kreiter, A.K., Schillen, T.B. and Singer, W.,Temporal coding in the visual cortex: new vistas on integration in the nervous system, Trends Neurosci. 15: 218–226, 1992.

  14. 14.

    Eckhorn, R., Frien, A., Bauer, R., Woelbern, T. and Kehr, H.,High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey, Neuroreport. 4: 243–246, 1993.

  15. 15.

    Engel, A.K., Kreiter, A.K., Konig, P. and Singer, W.,Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat, Proc Natl Acad Sci USA. 88: 6048–6052, 1991.

  16. 16.

    Engel, A.K., Konig, P., Kreiter, A.K. and Singer, W.,Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex, Science. 252: 1177–1179, 1991.

  17. 17.

    Ribary, U., Ioannides, A.A., Singh, K.D., Hasson, R., Bolton, J.P., Lado, F., Mogilner, A. and Llinas, R.,Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans, Proc Natl Acad Sci USA. 88: 11037–11041, 1991.

  18. 18.

    Desmedt, J.E. and Tomberg, C.,Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception, Neurosci Lett. 168: 126–129, 1994.

  19. 19.

    Gevins, A., Cutillo, B., Desmond, J., Ward, M., Bressler, S., Barbero, N. and Laxer, K.,Subdural grid recordings of distributed neocortical networks involved with somatosensory discrimination, Electroencephalogr Clin Neurophysiol. 92: 282–290, 1994.

  20. 20.

    Eckhorn, R.,Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features, Prog Brain Res. 102: 405–26, 1994.

  21. 21.

    Pulvermuller, F.,Hebb’s concept of cell assemblies and the psychophysiology of word processing, Psychophysiology 33: 317–333, 1996.

  22. 22.

    Donoghue, J.P., Sanes, J.N., Hatsopoulos, N.G. and Gaal, G.,Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements, J Neurophysiol. 79: 159–173, 1998.

  23. 23.

    Hatsopoulos, N.G., Ojakangas, C.L., Paninski, L. and Donoghue, J.P.,Information about movement direction obtained from synchronous activity of motor cortical neurons, Proc Natl Acad Sci USA. 95: 15706–15711, 1998.

  24. 24.

    Maynard, E.M., Hatsopoulos., N.G., Ojakangas, C.L., Acuna, B.D., Sanes, J.N., Normann, R.A. and Donoghue, J.P.,Neuronal interactions improve cortical population coding of movement direction, J Neurosci. 19: 8083–8093, 1999.

  25. 25.

    Whittington, M.A., Traub, R.D.,. Faulkner, H.J., Stanford, I.M. and Jefferys, J.G.,Recurrent excitatoty postsynaptic potentials induced by synchronized fast cortical oscillations, Proc Natl Acad Sci USA. 94: 12198–12203, 1997.

  26. 26.

    Traub, R.D., Whittington, M.A., Buhl, E.H., Jefferys, J.G. and Faulkner, H.J.,On the mechanism of the gamma → beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation, J Neurosci. 19: 1088- 105, 1999.

  27. 27.

    Traub, R.D., Jefferys, J.G. & Whittington, M.A.,Fast Oscillations in Cortical Circuits, MIT Press, Cambridge, Massachusetts, 1999.

  28. 28.

    Bauer, H.-U. and Pawelzik, K.,Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly, Physica. D69: 380–393, 1993.

  29. 29.

    Hopfield, J.J. and Herz, A.V.,Rapid local synchronization of action potentials: towardcomputation with coupled integrateand-fireneurons, Proc Natl Acad Sci USA. 92: 6655–6662, 1995.

  30. 30.

    Rennie, C.J., Wright, J.J. and Robinson, P.A.,Mechanisms of cortical electrical activity and emergence of gamma rhythm, J Theor Biol. 205: 17–35, 2000.

  31. 3I.

    Hopfield, J.J.,Neural networks and physical systems with emergent collective computational abilities, Proc Natl Acad Sci USA. 79: 2554–2558, 1982.

  32. 32.

    Hopfield, J.J., Feinstein, D.I. and Palmer, R.G.,‘Unlearning’ has a stabilizing effect in collective memories, Nature. 304: 158–159, 1983.

  33. 33.

    Crick, F. and Mitchison, G.,The function of dream sleep, Nature. 304: 111–114, 1983.

  34. 34.

    Nadler, J.V.,Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy, Life Sci. 29: 2031–2042, 1981.

  35. 35.

    Medvedev, A. and Willoughby, J.O.,Autoregressive modeling of the EEG in systemic kainic acid-induced epileptogenesis, Int J Neurosci. 97: 149–167, 1999.

  36. 36.

    Medvedev, A., Mackenzie, L., Hiscock, J.J. and Willoughby, J.O.,Kainic acid induces distinct types of epileptiform discharge with differential involvement of hippocampus and neocortex, Brain Res Bull. 52: 89–98, 2000.

  37. 37.

    Jenkins, G.M. & Watts, D.G.,Spectral Analysis and Its Applications, Holden-Day, San Francisco, 1968.

  38. 38.

    Franaszczuk, P.J., Blinowska, K.J. and Kowalczyk, M.,The application of parametric multichannel spectral estimates in the study of electrical brain activity, Biol Cybern. 51: 239–247, 1985.

  39. 39.

    Alarcon G, Binnie CD, Elwes RD and Polkey CE,Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy, Electroencephalogr Clin Neurophysiol. 94: 326–337, 1995.

  40. 40.

    Allen, P.J., Fish, D.R. and Smith, S.J.,Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy, Electroencephalogr Clin Neurophysiol. 82: 155–159, 1992.

  41. 41.

    Fisher, R.S., Webber, W.R., Lesser, R.P., Arroyo, S. and Uematsu, S.,High-frequency EEG activity at the start of Seizures, J Clin Neurophysiol. 9: 441–448, 1992.

  42. 42.

    Lee, S.A., Spencer, D.D. and Spencer, S.S., Intracranial EEG seizure-onset patterns in neocortical epilepsy, Epilepsia. 41: 297–307, 2000.

  43. 43.

    Gloor, P.,Contributions of electroencephalography and electrocorticography to the neurosurgical treatment of the epilepsies. In: (eds. Purpura, D., Penry, J. & Walter, R.), Neurosurgical Management of the Epilepsies, Raven Press, New York, 59–105, 1975.

  44. 44.

    Faught, E., Kuzniecky, R.I. and Hurst, D.C.,Ictal EEG wave forms from epidural electrodes predictive of seizure control after temporal lobectorny, Electroencephalogr Clin Neurophysiol. 83: 229–235, 1992.

  45. 45.

    Baldeweg, T., Spence, S., Hirsch, S.R. and Gruzelier, J.,Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations, Lancet. 352: 620–621, 1998.

  46. 46.

    Hasselmo, M.E., Anderson, B.P. and Bower, J.M.,Cholinergic modulation of cortical associative memory Function, J Neurophysiol. 67: 1230–1246, 1992.

  47. 47.

    Elazar, Z. and Hobson, J.A.,Neuronal excitability control in health and disease: a neurophysiological comparison of REM sleep and epilepsy, Prog Neurobiol. 25: 141–188, 1985.

  48. 48.

    Stevens, J.R.,All that spikes is not fits.In: (eds. Trimble, M.R. &Reynolds, E.H.).What Is Epilepsy? The Clinical and Scientific Basis of Epilepsy, Churchill Livingstone, Edinburgh, 97–115, 1986.

  49. 49.

    Engel, J., Alzerman, R., Caldecott-Hazard, F. & Kuhl, D.E.,Epileptic activation of antagonistic systems may explain paradoxical features of experimental and human epilepsy: a review. In: (ed. Wada, J.), Kindling Vol 2, Raven Press, New York, 1981.

  50. 50.

    Masco, D., Sahibzada, N., Switzer, R. and Gale, K.,Electroshock seizures protect against apoptotic hippocampal cell death induced by adrenalectomy, Neuroscience. 91: 1315–1319, 1999.

  51. 51.

    Niederrneyer, E. & Lopes da Silva, F.H., (eds.)EIectroencephalography: Basic Principles, Clinical Applications, and Related Fields, Williams & Wilkins, Baltimore, 1999.

  52. 52.

    Laidlaw, J., Richens, A. & Chadwick, D., (eds.)A Textbook of Epilepsy, Churchill Livingstone, Edinburgh, 1993.

  53. 53.

    Stein, D.J. & Ludik, J., (eds.)Neural Networks and Psychopathology.Cambridge University Press, Cambridge, UK, 1998.

  54. 54.

    Fink, M.,Convulsive therapy and epilepsy research.In: (eds. Trimble. M.R. & Reynolds, E.H.).What Is Epilepsy? The Clinical and Scientific Basis of Epilepsy, Churchill Livingstone, Edinburgh, 217–228, 1986.

  55. 55.

    Traub, R.D., Whittington, M.A., Stanford, I.M. and Jefferys, J.G.,A mechanism for generation of long-range synchronous fast oscillations in the cortex, Nature. 383: 621–624, 1996.

  56. 56.

    Jefferys, J.G., Traub, R.D. and Whittington, M.A.,Neuronal networks for induced ‘40 Hz’ rhythms, Trends Neurosci. 19: 202–208, 1996.

  57. 57.

    Dingledine, R. and Somjen, G.,Calcium dependence of synaptic transmission in the hippocampal slice, Brain Res. 207: 218–222, 1981.

  58. 58.

    Pumain, R., Menini, C., Heinemann, U., Louvel, J. and Silva-Barrat, C.,Chemical synaptic transmission is not Necessary for epileptic seizures to persist in the baboon Papio papio, Exp Neurol. 89: 250–258, 1985.

  59. 59.

    Yaari, Y., Konnerth, A. and Heinemann, U.,Spontaneous epileptiform activify of CA1 hippocampal neurons in low extracellular calcium solutions, Exp Brain Res. 51: 153–166, 1983.

  60. 60.

    Konnerth, A., Heinemann, U. and Yaari, Y.,Nonsynaptic epiliptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular Calcium, J Neurophysiol. 56: 409–423, 1986.

  61. 61.

    Heinemann, U., Konnerth, A., Pumain, R. and Wadman, W.J.,Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue, Adv Neurol. 44: 641–661, 1986.

  62. 62.

    Traub, R.D., Dudek, F.E., Taylor, C.P. and Knowles, W.D.,Simulation of hippocampal afterdischarges synchronized by electrical interactions, Neuroscience. 14: 1033–1038, 1985.

  63. 63.

    Traub, R.D.,Model of synchronized population bursts in electrically coupled interneurons containing active dendritic conductances, J Comput Neurosci. 2: 283–289, 1995.

Download references

Author information

Correspondence to A. V. Medvedev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Medvedev, A.V. Temporal binding at gamma frequencies in the brain: paving the way to epilepsy?. Australas. Phys. & Eng. Sci. Med. 24, 37–48 (2001). https://doi.org/10.1007/BF03178284

Download citation

Keywords

  • EEG
  • Gamma oscillations
  • Temporal binding
  • Associative Neural Networks
  • Epileptogenesis