Carbonates and Evaporites

, Volume 23, Issue 1, pp 39–49 | Cite as

Diagenesis of a bioclastic oyster deposit from the Lower Cretaceous (Chachao Formation). Neuquén basin. Mendoza Province, Argentina

  • Ricardo M. PalmaEmail author
  • Graciela S. Bressan
  • Kietzmann


The Lower Cretaceous Chachao Formation in the Malargüe anticline area consists of wackestone, packstone, and minor grainstone and mudstone rich in benthonic fauna that were deposited in a carbonate ramp. The carbonate diagenesis in the Valanginian Chachao Formation contains many processes with conspicuous effects, including micritization, dissolution, neomorphism, and cementation. The early diagenetic process is characterized by micritization, dissolution and mineralogic stabilization of components, and earlier cement phase represented by micrite cement and isopachous calcite cement, which have petrographic characteristics consistent with precipitation in a marine-phreatic diagenetic environment. Later diagenetic phenomena include granular calcite and syntaxial cement. Both of cement types are interpreted as typical of a meteoric-phreatic environment. Concentric-zoning pattern of alternating dull, and blotchy- to bright luminescent zones is interpreted as being caused by a decrease in redox potential (Eh), under conditions of a progressive marine burial meteoric-phreatic diagenetic environment. Geochemical data (Sr++, Na+, Mg++, Fe++, Mn++) and SEM features of the micrite suggest that original calcareous mud could have been calcite dominated (CDP). The δ18O composition of the granular calcite cement ranging from −2.84‰ to −4.27‰ PDB and the δ13C values of the cement between −2.46‰ and −3.50‰ PDB are compatible with precipitation from a fluid that evolved meteoric-phreatic composition. The high depleted δ18O values of theGryphaea oyster shells can be related to the dilution of the marine water with a fresh water influx, whereas shells with the heaviest δ13C isotopic compositions are probably related to the original marine signal, which suggest a closed diagenetic system for carbon.


carbonate diagenesis Valanginian Neuquén Basin Argentina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BATHURST, R.G.C., 1975, Carbonate Sediments and Their Diagenesis. Elsevier, Amsterdam, 658 p.Google Scholar
  2. CAROZZI, A.V., BERKOWSKI, F., RODRIGUEZ, M., SANCKES, M. and VONESHT, T., 1981, Estudio de microfacies de la Formación Chachao (Valanginiano), Provincia de Mendoza:VIII Actas del Congreso Geológico Argentino, v. 2, p. 545–565.Google Scholar
  3. CARPENTER, S.J. and LOHMANN, K.C., 1992, Sr/Mg ratios of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rate:Geochimica et Cosmochimica Acta, v. 56, p. 1837–1849.CrossRefGoogle Scholar
  4. CHAFETZ, H.S., 1986, Marine peloids: a product of bacterially induced precipitation of calcite:Journal of Sedimentary Petrology, v. 56, p. 812–817.Google Scholar
  5. DICKSON. J.A.D., 1965, A modified staining technique for carbonates in thin section:Nature, v. 205, p. 587.CrossRefGoogle Scholar
  6. DODD, J.R. and STANTON, R.J., 1981, Paleoecology, concepts and applications, John Wiley and sons, New York, 559 p.Google Scholar
  7. DREVER, J.I., 1982, The Geochemistry of Natural Waters. Prentice Hall, Englewood Cliffs, New Jersey, 288 p.Google Scholar
  8. FAIRCHILD, I.J., 1983, Chemical controls on cathodoluminescence of natural dolomites and calcites: new data and review:Sedimentology, v. 30, p. 579–583.CrossRefGoogle Scholar
  9. FOLK, R.L. and LAND, L.S., 1975, Mg/Ca ratio and salinity; two controls over cristallization of dolomite:American Association of Petroleum Geologists Bulletin, v. 59, p. 60–68.Google Scholar
  10. FRANK J.R., CARPENTER, A.B., and OGLESBY, W., 1982, Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (Upper Cambrian), southeast Missouri:Journal of Sedimentary Petrology, v. 52, p. 631–638.Google Scholar
  11. FRIEDMAN, G.M., 1959, Identification of Carbonate Minerals by Staining Methods:Journal of Sedimentary Petrology, v. 29, p. 87–97.Google Scholar
  12. GROVER, G. and READ, J.F., 1983, Paleoaquifer and deep burial related cements defined by regional cathodoluminescence patterns, middle Ordovician carbonates, Virginia:American Association of Petroleum Geologists, Bulletin, v. 67, p. 1275–1303.Google Scholar
  13. HARRIS, P.M., KENDALL, C.G.S.C., and LERCHE, I., 1985, Carbonate cementation —a brief review,in N. Schneidermann, and P.M. Harris, eds., Carbonate Cements. SEPM, Special Publication 36, p. 79–95.Google Scholar
  14. JAMES, N.P. and CHOQUETTE, P.W., 1990a, Limestones-The sea-floor diagenetic environment,in I.A. McIlreath and D.W. Morrow, eds., Diagenesis. Geoscience Canada, Reprint Series, no. 4, p. 13–34.Google Scholar
  15. JAMES, N.P. and CHOQUETTE, P.W., 1990b, Limestones-The meteoric diagenetic environment,in I.A. McIlreath and D.W. Morrow, eds. Diagenesis. Geoscience Canada, Reprint Series, no. 4, p. 35–73.Google Scholar
  16. KAUFMAN, A.J. and KNOLL, A.H., 1995, Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biochemical implications:Precambrian Research, v. 73, p. 27–49.CrossRefGoogle Scholar
  17. KILLINGLEY, J.S. and BERGER, W., 1979, Stable isotopes in mollusk shell. Detection of upwelling events:Science, v. 205, p. 186–188.CrossRefGoogle Scholar
  18. KOBLUK, R.R. and RISK, M.J., 1977, Micritization and carbonate grain binding by endolithic algae:American Association Petroleum Geologists Bulletin, v. 61, p. 1069–1082.Google Scholar
  19. KOZLOWSKY, E., CRUZ, C., CONDAT, P. and MANCEDA, R., 1990, Modelo estructural para el zócalo de la Cuenca Neuquina, Mendoza, Argentina:Actas XIoCongreso Geológico Argentino, v. 2, p. 27–30.Google Scholar
  20. KRANTZ, D.E., WILLIAMS, D.F., and JONES, D.F., 1987, Ecological and paleoenvironmental information using stable isotopes profiles from living and fossil molluscs:Palaeogeography, Palaeoclimatology, Palaeoecology, v. 58, p. 249–266.CrossRefGoogle Scholar
  21. LAND, L.S. and HOOPS, G.K., 1973, Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenesis solutions:Journal of Sedimentary Petrology, v. 43, p. 614–617.Google Scholar
  22. LANSEMI, Z. and SANDBERG, P.A., 1983, Temporal trends in the mineralogy of Phanerozoic micrite precursors. American Association Petroleum Geologists Abstracts with Programs Annual Convention, Tulsa, p. 93.Google Scholar
  23. LANSEMI, Z. and SANDBERG, P.A., 1984, Transormation of aragonite-dominated lime muds to microcrystalline limestones:Geology, v. 12, p. 420–423.CrossRefGoogle Scholar
  24. LEANZA, H., MARCHESE, H.G., and RIGGI, J.C., 1977, Estudio sobre los cambios faciales de los estratos limítrofes jurásicos-cretácicos entre Loncopué y Picún Leufú, provincia de Neuquén, República Argentina:Asociación Geológica Argentina Revista, v. 32, p. 190–208.Google Scholar
  25. LEGARRETA, L. and GULISANO, C., 1989, Análisis estratigráfico secuencial de la cuenca Neuquina (Triásico superior-Terciario inferior),in G. Chebli, and L. Spalletti, eds., Cuencas Sedimentarias Argentinas. Facultad de Ciencias Naturales, Universidad Nacional de Tucumán. Correlación Geológica Serie, no. 6, p. 221–243.Google Scholar
  26. LEGARRETA, L., GULISANO, C.A., and ULIANA M.A., 1993, Las secuencias sedimentarias jurásico-cretácicas,in V.A. Ramos, ed., Geología y recursos naturales de Mendoza. XII° Congreso Geológico Argentino y II° Congreso de Exploración de Hidrocarburos. Relatorio, v. 1, p. 87–114.Google Scholar
  27. LEGARRETA, L. and KOZLOWSKI, E., 1981, Estratigrafía, sedimentología y esquema prospectivo para la Formación Chachao, provincia de Mendoza:Actas VIII Congreso Geológico Argentino, v. 2, p. 521–543.Google Scholar
  28. LEGARRETA, L., KOZLOWSKI, E., and BOLL, A., 1981, Esquema estratigráfico y distribución de facies del Grupo Mendoza en el ámbito surmendocino de la Cuenca Neuquina:Actas VIII Congreso Geológico Argentino, v. 3, p. 389–409.Google Scholar
  29. LEGARRETA, L. and ULIANA M.A., 1991, Jurassic-Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes,in D.I.M. Mc Donald, ed., Sedimentation, tectonics and eustasy. Special Publication of International Association of Sedimentologists, no. 12, p. 429–450.Google Scholar
  30. LIGHTY, R.G., 1985, Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene barrier reef, southeast Florida shelf,in N. Schneidermann, and P.M. Harris, eds., Carbonate Cements. SEPM Special Publication, no. 36, p. 123–151.Google Scholar
  31. LONGMAN, M.W., 1980, Carbonate diagenetic textures from nearsurface diagenetic environments:American Association Petroleum Geologists Bulletin, v. 64, p. 461–487.Google Scholar
  32. MACHEL, H.G., 2000, Application of cathodoluminescence to carbonate diagenesis,in M. Pagel, V. Barbin, P. Blanc and D. Ohnenstetter, eds., Cathodoluminescence in geosciences. Springer-Verlag, Heidelberg, p. 271–301.CrossRefGoogle Scholar
  33. MACINTYRE, I.G., 1977, Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama:Journal of Sedimentary Petrology, v. 47, p. 503–516.Google Scholar
  34. MACINTYRE, I.G., 1984, Extensive submarine lithification in a cave in the Belize barrier reef platform:Journal of Sedimentary Petrology, v. 54, p. 211–235.Google Scholar
  35. MACINTYRE, I.G., 1985, Submarine cements-the peloidal question,in N. Schneidermann, and P.M. Harris, eds., Carbonate Cements. SEPM Special Publication, no. 36, p. 109–116.Google Scholar
  36. MAJOR, R.P. and WILBER, R.J., 1991, Crystal habit, geochemistry, and cathodoluminescence of magnesian calcite marine cements from the lower slope of Little Bahama Bank:Geological Society of America Bulletin, v. 103, p. 461–471.CrossRefGoogle Scholar
  37. MALIVA, R.G., 1989, Displacive calcite syntaxial overgrowths in open marine limestones:Journal of Sedimentary petrology, v. 59, p. 397–403.Google Scholar
  38. MANCEDA, R. and FIGUEROA, D., 1993, La inversión del rift mesozoico en la Faja Fallada, y Plegada de Malargüe, provincia de Mendoza:Actas XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos, v. 3 p. 219–232.Google Scholar
  39. MANCEDA, R. and FIGUEROA, D., 1995, Inversion of the Mesozoic Neuquén Rift in the Malargue fold and thrust belt, Mendoza, Argentina,in A. Tankard, R. Suárez, J.H. Welsink, eds., Petroleum basins of Southern South America. American Association of Petroleum Geologists Memoir, no. 62, p. 369–382.Google Scholar
  40. MARSHALL, J.F. and DAVIES, P.J., 1981, Submarine lithification on windward reef slopes: Capricorn-Bunker Group, southern Great Barrier Reef:Journal of Sedimentary Petrology, v. 51, p. 953–960.Google Scholar
  41. MAY, J.A. and PERKINS, R.D., 1979, Endolithic infestation of carbonate substrates below the sediment-water interface:Journal of Sedimentary Petrology, v. 49, p. 357–377.Google Scholar
  42. MEYERS, W.J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico:Journal of Sedimentary Petrology, v. 44, p. 837–861.Google Scholar
  43. MEYERS, W.J., 1991, Calcite cement stratigraphy: an overview,in C.E. Barker and O.C. Kopp, eds., Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications. SEPM Short Course, no. 25, p. 133–148.Google Scholar
  44. MOMBRU, C., ULIANA, M.A. and BERCOWSKI, F., 1978, Estratigrafía y sedimentología de las acumulaciones biocarbonáticas del Cretácico inferior surmendocino:Actas VII Congreso Geológico Argentino, v. 2, p. 695–709.Google Scholar
  45. PALMA, R.M. and LANÉS, S., 1998, Análisis tafonómico comparativo de las concentraciones esqueletales de la Formación Chachao, Mendoza-Argentina:Actas VIII Reunión argentina de sedimentología, p. 160–162.Google Scholar
  46. PALMA, R.M. and LANÉS, S., 2001, Shell bed stacking patterns in the Chachao Formation (Early Valanginian) in Malargüe area, Mendoza province, Neuquén Basin-Argentina:Carbonates and Evaporites, v. 16, p. 168–180.CrossRefGoogle Scholar
  47. PALMA, R.M. and MATHEOS. S.D., 1997, Dolomitización y su génesis en niveles de la Formación Chachao (Valanginiano) Cuenca neuquina, mendoza, Argentina:Memorias I Congreso Latinoamericano de Sedimentología, Venezuela, tomo II, p. 159–164.Google Scholar
  48. PINGITORE, N.E., 1978, The behavior of Zn2+ and Mn2+ during carbonate diagenesis: theory and applications:Journal of Sedimentary Petrology, v. 48, p. 799–814.Google Scholar
  49. PREZBINDOWSKI, D.R., 1985, Burial cementation, is it important? A case study, Stuart City Trend, South Central Texas,in N. Schneidermann and P.M. Harris, eds., Carbonate cements. SEPM Special Publication, no. 36, p. 241–264.Google Scholar
  50. RANDAZZO, A., SARVER, T.J., and METRIN, D.B., 1983, Selected geochemical factors influencing diagenesis of Eocene carbonate rocks, peninsula Florida, USA:Sedimentary Geology, v. 36, p. 1–14.CrossRefGoogle Scholar
  51. RAWSON, P.F., 1999, Long-distance correlations in the Valanginian-Hauterivian: Argentina — Western Mediterranean — NW Europe:Scripta Geologica, Special Issue 3, p. 151–158.Google Scholar
  52. REEDER, R.J. and GRAMS, J.C., 1987, Sector zoning in calcite cement crystals: implications for trace elements distributions in carbonates:Geochimica et Cosmochimica Acta, v. 51, p. 187–194.CrossRefGoogle Scholar
  53. REID, R.P., MACINTYRE, I.G. and JAMES, N.P., 1990, Internal precipitation of microcrystalline carbonate: a fundamental problem for sedimentologists:Sedimentary Geology, v. 68, p. 163–170.CrossRefGoogle Scholar
  54. RICHTER, D.K. and FÜCHTBAUER, H. 1978, Ferroan calcite replacement indicates former magnesian calcite skeletons:Sedimentology, v. 25, p. 843–860.CrossRefGoogle Scholar
  55. SCOFFIN, T.P., 1987, Introduction to carbonate sediments and rocks. Champman and Hall, New York, NY 274 p.Google Scholar
  56. TUCKER, M.E. and WRIGHT, V.P., 1990, Carbonate Sedimentology. Blackwell Scientific Publications, Oxford, 497 p.Google Scholar
  57. ULIANA, M.A., MOMBRU, C., and BERCOWSKI, F., 1979, Los abultamientos calcáreos del Cretácico inferior en el sur mendocino:Actas del VII Congreso Geológico Argentino, v. 2, p. 896–709.Google Scholar
  58. VEIZER, J. 1992, depositional and diagenetic history of limestones: stable and radiogenic isotopes,in N. Claver, and N.S. Chaudhuri, eds, Isotopes signatures and sedimentary records. Lectures Notes in Earth Science, Springer-Verlag, v. 43, p. 13–48.Google Scholar
  59. VERGANI, G.D., TANKARD, A.J. BELOTTI, H.J., and WELSINK, H.J., 1995, Tectonic evolution and paleogeography of the Neuquen Basin, Argentina,in A.J. Tankard, S. Suárez, and H.J. Welsink, eds., Petroleum basins of South America. American Association Petroleum Geologists Memoir, no. 62, p. 383–402.Google Scholar
  60. WAGNER, P.D. and MATTHEWS, R.K., 1982, Porosity preservation in the Upper Smackover (Jurassic) carbonate grainstone, Walker, Creek Field, Arkansas: response of paleogeographic lenses to burial processes:Journal of Sedimentary Petrology, v. 52, p. 3–18.CrossRefGoogle Scholar
  61. ZAPATA, T., BRISSÓN, I, and DZELALIJA, F., 1999, The structure of the Andean Fold and Thrust Belt in relation to basement control in the Neuquén Basin:Boletín de Informaciones Petroleras, v. 60, p. 112–121.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Ricardo M. Palma
    • 1
    Email author
  • Graciela S. Bressan
    • 1
  • Kietzmann
    • 1
  1. 1.Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad Universitaria-Pabellón IIBuenos AiresArgentina

Personalised recommendations