Carbonates and Evaporites

, Volume 11, Issue 1, pp 85–103 | Cite as

Dedolomites associated with karstification. An example of early dedolomitization in lacustrine sequences from the Tertiary Madrid basin, central Spain

  • J. C. Cañaveras
  • S. Sánchez-Moral
  • J. P. Calvo
  • M. Hoyos
  • S. Ordóñez


A variety of calcite fabrics formed by dedolomitization of middle to upper Miocene continental sediments of the Madrid basin, central Spain. The dedolomites are associated with other carbonates that show abundant diagenetic features. The diagenetic carbonates (Diagenetic Carbonate Zone, DCZ) overlies and grades laterally into lacustrine dolomite (Lower Dolomite Unit, LDU) and evaporites (Evaporitic Unit, EU), and in turn is capped by a paleokarst surface.

The main dedolomite fabrics include sutured calcites and radial-fibrous calcites, the latter consisting of pseudospherulite mosaics and fibrous crusts. Other subordinate dedolomite fabrics consist of micro to mesocrystalline mosaics of rhombic, occasionally zoned calcites as well as reworked pseudospherulite crystals. These fabrics are interpreted to have been formed from extensive calcitization of dolostones and associated evaporite facies, the process being triggered and fostered by input of meteoric waters throughout a karstic system. The origin of the radial- fibrous calcites is discussed more specifically in view of their similarities to other calcite fabrics (e.g. Microcodium) often described in meteoric diagenetic environments.

Geochemical evidence indicates that dedolomitization occurred in the shallow subsurface (<40m depth) and was achieved by oxidizing meteoric-derived ground waters. The diagenetic system behaved as an open system for nearly all trace elements analyzed; but in the shallower zone (vadose zone) the system is partially close respect to strontium. Vertical trends of the stable isotopes also support the proposed paleokarst model characterized by an irregular shallow water table and a narrow vadose zone.

The results obtained from the geochemical simulation support that dedolomitization could develop by two combined hydrographical pattems: authigenic recharge through limestones and allogenic recharge. The dissolution/precipitation rates calculated for the main minerals involved in the process are consistent with petrographic- and geochemical evidence.


Calcite Dolomite Gypsum Miocene Evaporite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALLAN, J.R., and MATTHEWS, R.K., 1982, Isotope signatures associated with early meteoric diagenesis:Sedimentology, v. 29, p. 709–817.CrossRefGoogle Scholar
  2. ALONSO-ZARZA, A.M., CALVO, J.P., and GARCIA dEL CURA, M.A., 1992, Palustrine sedimentation and associated features—grainification and pseudo-microkarst— in the Middle Miocene (Intermediate Unit) of the Madrid Basin, Spain:Sedimentary Geology, v. 76, p. 43–61.CrossRefGoogle Scholar
  3. AREF, M.M. El, AWADALAH, G.H., and AHMED, S., 1986, Karst landforms development related sediments in the Miocene rocks of the Red Sea coastal zone, Egypt:Geologische Rundschau, v. 75, p. 781–790.CrossRefGoogle Scholar
  4. ASO, E.J., GISBERT, T.J., and VALERO, B., 1992, Type septaria-cone in cone nodules in the Stephano-Permian of the Catalan Pyrenees:Carbonates and Evaporites, v. 7, p. 132–139.CrossRefGoogle Scholar
  5. BACK, W., HANSHAW, B.B., PLUMMER, L.N., RAHN, P.H., RIGHTMIRE, C.T., and RUBIN, M., 1983, Process and rate of dedolomitization: mass transfer and C-14 dating in a regional carbonate aquifer:Geological Society of America Bulletin, v. 94, p. 1415–1429.CrossRefGoogle Scholar
  6. BANNER, J.L., and HANSON, G.N., 1990, Calculation of simultaneous isotopic and trace element variations during water- rock interaction with applications to carbonate diagenesis:Geochimica et Cosmochimica Acta, v. 54, p. 2123–2137.CrossRefGoogle Scholar
  7. BARNABY, R.J., and RIMSTIDT, J.D., 1989, Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites:Geological Society of America Bulletin, v. 101, p. 795–804.CrossRefGoogle Scholar
  8. BELLANCA, A., CALVO, J.P., CENSI, P., NERI, R., and POZO, M., 1992, Recognition of lake-level changes in Miocene lacustrine units, Madrid basin, Spain. Evidence from facies analysis, isotope geochemistry and clay mineralogy:Sedimentary Geology, v. 76, p. 135–153.CrossRefGoogle Scholar
  9. BISCHOFF, J.L., JULIA, R., SHANKS, W.C. and ROSENBAUER, R.J., 1994, Karstification without carbonic acid: Bedrock dissolution by gypsum-driven dedolomitization:Geology, v. 22, p. 995–998CrossRefGoogle Scholar
  10. BORDEGAT, A.M., 1974, Les Microcodiums. Milieus et modes de dèvelopment: Thése Doc. Lab. Geol. Fa. Sci. Lyon, v. 62, p. 136–235.Google Scholar
  11. BRAUER, J.S., and BAKER, P.A., 1984, Experimental hydrothermal dedolomitization:Ass. Round Table. AAPG Ann. Conv. with discussion. San Antonio (Texas). Tech. Prog. Summ. and Abstracts, p. 456.Google Scholar
  12. BRAUN, M. and FRIEDMAN, G.M., 1970, Dedolomitization fabric in peels: a possible clue to unconformity surfaces:Journal of Sedimentary Petrology, v. 40, p.417–419.CrossRefGoogle Scholar
  13. BUDAI, J.M., LOHMANN, K.C., and OWEN, R.M., 1984, Burial dedolomite in the Mississippian Madison Limestone, Wyoming an Utah thrust belt:Journal of Sedimentary Petrology, v. 54, p. 276–288.Google Scholar
  14. BUSENBERG, E., and PLUMMER, L.N., 1985, Kinetic and thermodynamic factors controlling the distribution of SO4 2− and Na+ in calcites and selected aragonites:Geochimica et Cosmochimica Acta, v. 49, p. 713.Google Scholar
  15. CALVO, J.P., ALONSO ZARZA, A.M., and GARCIA dEL CURA M.A., 1989, Models of Miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid basin (Central Spain):Palaeogeography, Palaeoclimatology, Palaeoecology, v. 70, p. 199–214.CrossRefGoogle Scholar
  16. CALVO, J.P., HOYOS, M., MORALES, J., and ORDOÑEZ, S., 1990, Neogene stratigraphy, sedimentology and raw materials of the Madrid basin:Paleontologia i Evolució, v. 2, p. 63–95.Google Scholar
  17. CALVO, J.P., JONES, B.F., BUSTILLO, M., FORT, R., ALONSO-ZARZA, A.M., and KENDALL, C., 1995, Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, central Spain:Chemical Geology, v. 123, p. 173–191.CrossRefGoogle Scholar
  18. CAÑAVERAS, J.C., 1994, El paleokarst del techo de la Unidad Internedia del Mioceno de la Cuenca de Madrid: Unpublished Ph.D. Thesis. Universidad Complutense de Madrid, 433 p.Google Scholar
  19. CAÑAVERAS, J.C., CALVO, J.P., HOYOS, M., and ORDOÑEZ, S., 1996, Palaeomorphologic features of an intra-Vallesian paleokarst, Tertiary Madrid basin. Significance of paleokarstic surfaces in continental basin analysis,in Friend, P., and Dabrio, C.J. (eds.), Tertiary Iberian basins: the stratigraphic record of crustal kinematics. World and Regional Geology 6. Cambridge University Press, p. 278–284.Google Scholar
  20. CHAFETZ, H.S., 1972, Surface diagenesis of limestone:Journal of Sedimentary Petrology, v. 42, p. 325–329.Google Scholar
  21. CHAFETZ, H.S., and BUTLER, J.C., 1980, Petrology of recent caliche pisolites, spherulites, and speleothem deposits from central Texas:Sedimentology, v. 27, p. 497–518.CrossRefGoogle Scholar
  22. DE GROOT, K., 1967, Experimental dedolomitization:Journal of Sedimentary Petrology, v. 37, p. 1216–1220.Google Scholar
  23. DEIKE, R.D., 1990, Dolomite dissolution rates and possible Holocene dedolomitization of water bearing units in the Edwards aquifer, south-central Texas:Journal of Hydrology, v. 112, p. 335–373.CrossRefGoogle Scholar
  24. DIKSON, J.A.D., 1993 Crystal growth diagrams as an aid to interpreting the fabrics of calcite aggregates:Journal of Sedimentary Petrology, v. 63, p. 1–17.Google Scholar
  25. DOMINGUEZ-BELLA, S., and GARCIA-RUIZ, J.M., 1987, Banoing structure in induced morphology crystal aggregates of CaCO3:Journal of Materials Science, v. 22, p. 3095–3102CrossRefGoogle Scholar
  26. ESTEBAN, N., 1982, Discussion. Comments on Petrology of recent caliche, pisolites, spherulites and speleothem deposits from central Texas, by H. S. Chafetz and J. C. Butler:Sedimentology, v. 29, p. 441–445.CrossRefGoogle Scholar
  27. ESTEBAN, M., 1991, Paleokarst. Practical applications:in Wright, V.P. (ed.), Paleokarst and paleokarstic reservoirs. PRIS Occ. Publ. Series, 02, p. 89–119.Google Scholar
  28. EVAMY, B.D. 1967, Dedolomitization and the development of rhomboedral pores in limestones:Journal of Sedimentary Petrology, v. 37, p. 1204–1215.CrossRefGoogle Scholar
  29. FOLK, R.L. 1993, SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks:Journal Sedimentary Petrology, v. 63, p. 990–999.Google Scholar
  30. FOLK, R.L., and ASSERETO, R. 1976, Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothem, Carlsbad Caverns, New Mexico:Journal of Sedimentary Petrology, v. 46, p. 486–496.Google Scholar
  31. FOLKMAN, Y. 1969, Diagenetic dedolomitization in the Albian-Cenomanian Yagur dolomite on Mount Carmel (northern Israel):Journal of Sedimentary Petrology, v. 39, p. 380–385.CrossRefGoogle Scholar
  32. FRANZINI, M., LEONI, L., and SAITTA, M. 1972, A simple method to evaluate the matrix in x-ray fluorescence analysis:X-Ray Spectrometry, v. 1, p. 151–154.CrossRefGoogle Scholar
  33. FRANZINI, M., LEONI, L., and SAITTA, M. 1976, Enhancement effects in x-ray fluorescence analysis of rocks:X-Ray Spectrometry, v. 5, p. 208–211.CrossRefGoogle Scholar
  34. FRIEDMAN, G.M., 1972, Significance of Red Sea in problem of evaporites and basinal limestones:AAPG Bulletin, v. 56, p. 1072–1086.Google Scholar
  35. FRIEDMAN, G.M. 1994, Upper Cambrian-Lower Ordovician (Sauk) platform carbonates of the Northern Appalachian (Gondwana) passive margin:Carbonates and Evaporites, v. 9, p. 143–150.CrossRefGoogle Scholar
  36. FRIEDMAN, G.M., SANDERS, J.E., and KOPASKA-MERKEL, D.C., 1992, Principles of sedimentary deposits: Macmillan Publishing Company, New York, 717 p.Google Scholar
  37. FRIEDMAN, G.M., SNEH, A., and OWEN, R.W. 1985, The Ras Muhammad pool: implications for the Gavish Sabkha,in Friedman, G.M., and Kumbrein, W.E. (eds.), Hypersaline ecosystems. Springer-Berlag, Berlin, p. 218–237.CrossRefGoogle Scholar
  38. FRITZ, R., and KATZ, A. 1972, The sodium distribution in dolomite crystals:Chemical Geology, v. 72, p. 170–194.Google Scholar
  39. GISBERT, J., VALERO, B., and ALBENIZ, M.A., 1987, Septarian and cone in cone genesis by activity of microorganisms producing organic gel:8th IAS European Meeting, Tunis. Abstract book, p. 206–207.Google Scholar
  40. GIVEN, R.K., and WILKINSON, B.H. 1985, Kinetic control of morphology, composition and mineralogy of abiotic sedimentary carbonates:Journal of Sedimentary Petrology, v. 55, p. 109–119.Google Scholar
  41. GOLDSMITH J.R., and GRAF, D.L. 1958, Relation between lattice constants and composition of the Ca−Mg carbonates:American Mineralogist, v. 43, p. 84–101.Google Scholar
  42. GREGG, J.M., and SIBLEY, D.F. 1984, Epigenetic dolomitization and the origin of xenotopic texture:Journal of Sedimentary Petrology, v. 54, p. 908–931.Google Scholar
  43. HANSHAW, B.B., and BACK, W. 1979, Major geochemical processes in the evolution of carbonate aquifer systems:Journal of Hydrology, v. 43, p. 287–312.CrossRefGoogle Scholar
  44. HAYS, P.D., and GROSSMAN, E.L. 1991, Oxygen isotopes in meteoric cements as indicators of continental paleoclimate:Geology, v. 19, p. 441–444.CrossRefGoogle Scholar
  45. HOLAIL, H., LOHMANN, K.C., and SANDERSON, I., 1988, Dedolomitization and dedolomitization of Upper Cretaceous carbonates: Bahariya Oasis, Egypt,in Shukla, V., and Baker, P.A. (eds.), Sedimentology and geochemistry of dolostones.SEPM Special Paper, nº 43, p. 191–207.Google Scholar
  46. HUDSON, J.D., 1977, Stable isotopes and limestone lithification:Journal of the Geological Society of London, v. 133, p. 637–660.CrossRefGoogle Scholar
  47. ISHIKAWA, M., and ICHIKUNI, M., 1984, Uptake of sodium and potassium by calcite:Chemical Geology, v. 42, p. 137–146.CrossRefGoogle Scholar
  48. KASTNER, M., 1982, When does dolomitization occur and what controls it?:11th International Congress of Sedimentology (Abstracts). Hamilton, Ontario, Canada p. 124.Google Scholar
  49. KENDALL, A.C., 1985, Radiaxial fibrous calcite: a reappraisal,in Schneidermann, N., and Harris, P.M. (eds.), Carbonate cements.SEPM Special Publication, nº 36, p. 59–77.Google Scholar
  50. KENNY, R., 1992, Origin of disconformity dedolomite in the Martin Formation (Late Devonian, nothern Arizona):Sedimentary Geology, v. 78, p. 137–146.CrossRefGoogle Scholar
  51. KHALAF, F.I., and ABDAL, M.S., 1993, Dedolomitization of dolocrete deposits in Kuwait, Arabian Gulf:Geologische Rundschau, v. 82, p. 741–749.CrossRefGoogle Scholar
  52. KHOURY, H.H., EBERL, D.D., and JONES, B.F., 1983, Origin of magnesian clays from the Amargosa desert, Nevada:Clays and Clay Minerals, v. 30, p. 327–336.CrossRefGoogle Scholar
  53. KIANO, Y., OKUMURA, M., and IDOGAKI, M., 1975, Incorporation of sodium, chloride and sulfate with calcium carbonate:Geochem. Journal, v. 84, p. 75–84.Google Scholar
  54. KLAPPA, C., 1978, Biolithogenesis ofMicrocodium: elucidation:Sedimentology, v. 25, p. 489–522.CrossRefGoogle Scholar
  55. LAND, L.S., and PREZBINDOWSKI, D.R. 1981, The origin and evolution of saline formation waters, lower Cretaceous carbonates, south-central Texas, U.S.A:Journal of Hydrology, v. 54, p. 51–74.CrossRefGoogle Scholar
  56. LEE, M.R., and HARWOOD, G.M., 1989, Dolomite calcitization and cement zonation related to uplift of the Raisby Formation (Zechstein carbonate), northeast England:Sedimentary Geology, v. 65, p. 285–305.CrossRefGoogle Scholar
  57. LINDHOLM, R.C., and FINKELMAN, R.B., 1972, Caltite staining: semiquantitative determination of ferrous iron:Journal of Sedimentary Petrology, v. 42, p. 239–245.CrossRefGoogle Scholar
  58. LUCIA, F.J., 1961, Dedolomitization in the Tansill (Permian) Formation:Geological Society of America Bulletin, v. 72, p. 1107–1110.CrossRefGoogle Scholar
  59. MARGARITZ, M., and KAFRI, U., 1981, Stable isotope and Sr2/Ca2+ evidence of diagenetic dedolomitization in a schizohaline environment: Cenomanian of northern Israel:Sedimentary Geology, v. 28, p. 29–41.CrossRefGoogle Scholar
  60. McCAULEY, J.W., and ROY, R., 1974, Controlled mucleation and crystal growth of various CaCO3 phases by the silicagel technique.American Mineralogist, v. 59, p. 947–963.Google Scholar
  61. MIDDELTON, G.V., 1961, Evaporite solution breccias from the Mississippian of southwest Montana:Journal of Sedimentary Petrology, v. 31, p. 189–195.Google Scholar
  62. MORROW, D.W., 1982, Descriptive field classification of sedimentary and diagenetic breccia fabrics in carbonate rocks:Bulletin Canadian Petroleum Geology, v. 30, p.227–229.Google Scholar
  63. MOSSLER, J.H., 1971, Diagenesis and dolomitization of Swope Formation (Upper Pensylvanian) southeast Kansas:Journal of Sedimentary Petrology, v. 41, p. 962–970.CrossRefGoogle Scholar
  64. MUCCI, A., 1987, Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater:Geochimica et Cosmochimica Acta, v. 51, p. 1977–1984.CrossRefGoogle Scholar
  65. NG, K.C., and JONESS, B., 1989, Sedimentology and diagenesis of Upper Mississippian to lower Permian strata, Talbot Lake area, Jasper National Park, Alberta:Canadian Journal of Earth Science, v. 26, p. 275–295.CrossRefGoogle Scholar
  66. ORDOÑEZ, S., CALVO, J.P., GARCIA DEL CURA, M.A., ALONSO-ZARZA, A.M., and HOYOS, M., 1991, Sedimentology of sodium sulphate deposits and special clays from the Tertiary Madrid Basin (Spain):Special Publication International Association of Sedimentologits, nº 13, p. 39–55.Google Scholar
  67. PARKHURST, D.L., THORSTENTON, D.C., and PLUMMER, L.N., 1980, PHREEQE, a computer program for geochemical calculations:U.S. Geological Survey Water Resource Investigation, 80–96: 210 p.Google Scholar
  68. PITZER, K.S., 1973, Thermodynamics of electrolytes I. Theoretical basis and general equations:Journal of Physical Chemistry, v. 77, p. 268–277.CrossRefGoogle Scholar
  69. PLUMMER, L.N., 1984, Geochemical modelling: a comparision of forward and inverse methods,in Hitchon, B., and Wallick, E.T. (eds.). Practical applications of ground water geochemistry. Proceedings of First Canadian/American conference on hydrology, Banff, Alberta, Canada.Google Scholar
  70. PLUMER, L.N., PARKHURST, D.L., FLEMING, G.W., and DUNKLE, S.A., 1988, PHRQPITZ, a computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines:U.S. Geological Survey Water Resources Investigation, 88–4153, 310 pp.Google Scholar
  71. PLUMMER, L.N., BUSBY, J.F., LEE, R.W., and IANSHAW, B.B., 1990, Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming and South Dakota:Water Resources Research, v. 26, p. 1981–2014.CrossRefGoogle Scholar
  72. PODEMSKI, M., 1973, Dedolomitization of the Zechstein carbonates in the region of Lubin:Kwart. Geol., v. 17, p. 487–496.Google Scholar
  73. ROSSI, C., 1993, Sedimentología y diagénesis del Paleoceno superior — Eoceno inferior en la Cuenca de Áger (Sierras Marginales, prepirineo de Lérida), Unpublished PhD. Thesis Universidad Complutense Madrid, 324 p.Google Scholar
  74. SANCHEZ-MORAL, S., HOYOS, M., ORDOÑEZ, S., GARCIA DEL CURA, M.A., and CAÑAVERAS, J.C., 1993, Génesis de epsomita infiltracional por dedolomitización en ambiente sulfatado árido: eflorescencias en la Unidad Inferior evaporítica de la Cuenca de Calatayud:V Congreso de Geoquímica de España, Soria, p. 24–29.Google Scholar
  75. SAUNDERS, J.A., and TORAN, L.E., 1994, Evidence for dedolomitization and mixing in Paleozoic carbonates near Oak Ridge, Tennessee:Ground Water, v. 32, p. 207–214CrossRefGoogle Scholar
  76. SCHMIDT, V., 1965, Facies, diagenesis and related reservoir properties in the Gigas beds (upper Jurassic), NW Germany,in Pray, L.C., and Murray, R.C. (eds.), Dolomitization and limestone diagenesis: a symposium.SEPM Special Paper, nº 13, p. 124–168.Google Scholar
  77. SELLWOOD, B.W., SCOTT, J., JAMES, B., EVANS, R., and MARSHALL, J., 1987, Regional significance of dedolomitization in Great Oolite reservoir facies of southern England,in Brooks, J., and Glennie, K. (eds.), Petroleum geology of North West Europe, p. 124–127.Google Scholar
  78. STANTON, R.J.Jr., 1966, The solution breccia process:Geological Society of America Bulletin, v. 77, p. 843–848.CrossRefGoogle Scholar
  79. SWENNEN, R., BOONEN, P., and VIAENNE, W., 1982, Stratigraphy an lithogeochemistry of the Wathorn section (Lower Visean; Vesder basin, Ebelgium) and its implications:Bulletin de la Societe Belge de Geologie, v. 91, p. 239–258.Google Scholar
  80. TARNEY, J., and SCHREIBER, B.C., 1976, Cone-in-cone and beef-in-shale textures from DSDP site 330, Falkland Platean, South Atlantic:Initial Reports of Deep Sea Drilling Project, v. 36, p. 865–870.Google Scholar
  81. THERIAULT, F., and HUTCHEON, I., 1987, Dolomitization and calcitization of the Devonian Grosmont Formation, Northern Albern:Journal of Sedimentary Petrology, v. 6, p. 955–966.Google Scholar
  82. VEGAS, R., and BANDA, E., 1982, Tectonic framework and Alpine evolution of the Iberian Peninsula:Earth Evolution Sciences, v. 4, p. 320–343.Google Scholar
  83. VERRECHIA, E.P., and VERRECHIA, K.E. 1994, Needlecalcite: a critical review and a proposed classification:Journal of Sedimentary Research, v. A64, p. 650–664.Google Scholar
  84. WARBURTON, J., and ALVAREZ, C., 1989, A thrust tectonic interpretation of the Guadarrama Mountains, Spanish Central System,in AGGEP (ed.), Libro Homenaje a R. Soler, p. 147–155.Google Scholar
  85. WARRACK, M., 1974, The petrography and origin of dedolomitized, veined or brecciated carbonate rocks, the “corneiles”, in Fréjus region, French Alps:Journal of the Geological Society of London, v. 130, p. 229–247.CrossRefGoogle Scholar
  86. WARREN, J.K., HAVHOLM, K.G., ROSEN, M.R., and PARSLEY, M.J., 1990, Evolution of gyspsum karst in the Kirschberg evaporite member near Fredericksburg, Texas:Journal of Sedimentary Petrology, v. 60, p. 721–734.Google Scholar
  87. WEAVER, C.E., and BECK, K.C., 1977, Miocene of the SE United States: A model for chemical sedimentation in a perimarine environment:Sedimentary Geology, v. 17, p. 12–34.CrossRefGoogle Scholar
  88. WESTALL, F., and RINCÉ, Y. 1994, Biofilms, microbial mats and microbe-particle interactions: electron microscope observations from diatomaceous sediments:Sedimentology, v. 41, p. 147–162.CrossRefGoogle Scholar
  89. WOO, K.S., ANDERSON, T.F., and SANDBERG, P.A. 1993, Diagenesis of skeletal and nonskeletal components of mid-Cretaceous limestones:Journal of Sedimentary Petrology, v. 63, p. 18–32.Google Scholar
  90. WOOD, G.W., and ARMSTRONG, A.K., 1975, Diagenesis and stratigraphy of the Lisburne Group limestones of the Sadlerochi Mountains and adjacent areas, northeastern Alaska:U.S. Geological Survey Profesional Paper 857, 47 p.Google Scholar
  91. WOODLAND, B.G., 1964, The nature and origin of cone-in-come structure:Fieldiana Geology, v. 13, p. 185–205.Google Scholar
  92. WRIGHT, V.P., and PEETERS, C., 1989, Origin of some early Carboniferous calcrete fabrics revealed by cathodoluminescence: Implications for interpreting the sites of calcreit formation:Sedimentary Geology, v. 65, p. 345–353.CrossRefGoogle Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • J. C. Cañaveras
    • 1
  • S. Sánchez-Moral
    • 1
  • J. P. Calvo
    • 2
  • M. Hoyos
    • 1
  • S. Ordóñez
    • 3
  1. 1.Departamento de GeologíaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
  2. 2.Departamento de Petrología y Geoquímica. Facultad de Ciencias GeológicasUniversidad Complutense de MadridMadridSpain
  3. 3.Departamento de Ciencias de la Tierra y Medio Ambiente. Facultad de CienciasUniversidad de AlicanteAlicanteSpain

Personalised recommendations