Annals of Microbiology

, Volume 59, Issue 1, pp 151–156 | Cite as

The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens

  • Simon W. J. GouldEmail author
  • Mark D. Fielder
  • Alison F. Kelly
  • Marina Morgan
  • Jackie Kenny
  • Declan P. Naughton
Applied Microbiology Original Articles


Hospital acquired infections (HAI) are a major problem worldwide and controlling the spread of these infections within a hospital is a constant challenge. Recent studies have highlighted the antimicrobial properties of copper and its alloys against a range of different bacteria. The objective of this study was to evaluate the antimicrobial properties of copper compared to stainless steel against a range of clinically important pathogens. These pathogens consisted of five isolates of each of the following organisms; meticillin resistantStaphylococcus aureus (MRSA),Pseudomonas aeruginosa, Escherichia coli, vancomycin-resistant Enterococci (VRE) and Panton-Valentine Leukocidin positive community acquired-MSSA (PVL positive CA-MSSA). MRSA,P. aeruginosa, E. coli, and CA-MSSA isolates were not detectable after a median time of 60 minutes. No detectable levels for all VRE isolates were determined after a median time of 40 minutes. However, for all isolates tested the stainless steel had no effect on the survival of the bacteria and levels remained similar to the time zero count. The results of this study demonstrate that copper has a strong antimicrobial effect against a range of clinically important pathogens compared to stainless steel and potentially could be employed to aid the control HAI.

Key words

nosocomial pathogens copper infection antimicrobial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou Neel E.A., Ahmed I., Pratten J., Pratten J., Nazhat S.N., Knowles J.C. (2005). Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials, 26: 2247–2254.CrossRefGoogle Scholar
  2. Airey P., Verran J. (2007). Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J. Hosp. Infect., 67: 271–277.CrossRefPubMedGoogle Scholar
  3. Andrews J.M. for the BSAC Working Party on Susceptibility Testing (2007). BSAC standardized disc susceptibility testing method (version 6). J. Antimicrob. Chemother., 60: 20–41.CrossRefPubMedGoogle Scholar
  4. Baena M.I., Marquez M.C., Matres V., Botella J., Ventosa A. (2006). Bactericidal activity of copper and niobium-alloyed austenitic stainless steel. Curr. Microbiol., 53: 491–495.CrossRefPubMedGoogle Scholar
  5. Cooney T.E. (1995). Bactericidal, activity of copper and noncopper paints. Infect. Control. Hosp. Epidemiol., 16: 444–450.CrossRefPubMedGoogle Scholar
  6. Dollwet H.H.A., Sorenson J.R.J. (2001). Historic uses of copper compounds in medicine. J. Trace. Elem. Med. Biol., 2: 80–87.Google Scholar
  7. Faúndez G., Troncoso M., Navarrete P., Figueroa G. (2004). Antimicrobial activity of copper surfaces against suspensions ofSalmonella enterica andCampylobacter jejuni. BMC Microbiol., 4: 19.CrossRefPubMedGoogle Scholar
  8. Halwani M., Solaymani-Dodaran M., Grundmann H., Coupland C., Slack R.J. (2006). Cross-transmission of nosocomial pathogens in an adult intensive care unit: incidence and risk factors. J. Hosp. Infect., 63: 39–46.CrossRefPubMedGoogle Scholar
  9. Kramer A., Schwebke I., Kampf G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis., 16: 130.CrossRefGoogle Scholar
  10. Lautenbach E., Polk R.E. (2007). Resistant Gram-negative bacilli: A neglected healthcare crisis? Am. J. Health-Syst. Ph., 64: S3–21.CrossRefGoogle Scholar
  11. Mclean R.J.C., Hussain A.A., Sayer M., Vincent P.J., Hughes D.J., Smith T.J.N. (1993). Antibacterial activity of multilayer silver copper surface-films on catheter material. Can. J. Microbiol., 39: 895–899.PubMedCrossRefGoogle Scholar
  12. Mehtar S., Wiid I., Todorov S.D. (2008). The antimicrobial activity of copper and copper alloys against nosocomial pathogens andMycobacterium tuberculosis isolates from healthcare facilities in the Western Cape: an in-vitro study. J. Hosp. Infect., 68: 45–51.CrossRefPubMedGoogle Scholar
  13. Noyce J.O., Michels H., Keevil C.W. (2006a). Use of copper cast alloys to controlEscherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol., 72: 4239–4244.CrossRefPubMedGoogle Scholar
  14. Noyce J.O., Michels H., Keevil C.W. (2006b). Potential use of copper surfaces to reduce survival of epidemic meticillin-resistantStaphylococcus aureus in the healthcare environment. J. Hosp. Infect., 63: 289–297.CrossRefPubMedGoogle Scholar
  15. Oie S., Hosokawa I., Kamiya A. (2002). Contamination of room door handles by methicillin-sensitive/ methicillin-resistantStaphylococcus aureus. J. Hosp. Infect., 51: 140–143.CrossRefPubMedGoogle Scholar
  16. Qin Y.M., Zhu C.J., Chen J., Liang D., Wo G.F. (2007). Absorption and release of zinc and copper ions by chitosan fibers. J. Appl. Polym. Sci., 105: 527–532.CrossRefGoogle Scholar
  17. Ruparelia J.P., Chatteriee A.K., Duttagupta S.P., Mukherji S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 4: 707–716.CrossRefPubMedGoogle Scholar
  18. Song J.S., Lee S., Cha G.C., Jung S.H., Choi S.Y., Kim K.H., Mun M.S. (2005). Surface modification of silicone rubber by ion beam assisted deposition (IBAD) for improved biocompatibility. J. Appl. Polym. Sci., 96: 1095–1101.CrossRefGoogle Scholar
  19. Thneibat A., Fontana M., Cochran M.A., Gonzalez-Cabezas C., Moore B.K., Matis B.A., Lund M.R. (2008). Anticariogenic and antibacterial properties of a copper varnish using anin vitro microbial caries model. Oper. Dent., 33: 142–148.CrossRefPubMedGoogle Scholar
  20. Vonberg R.P., Wolter A., Chaberny I.F., Kola A., Ziesing S., Suerbaum S., Gastmeier P. (2007). Epidemiology of multidrug-resistant Gram-negative bacteria: Data from an university hospital over a 36-month period. Int. J. Hyg. Environ. Health., 211: 251–257.CrossRefPubMedGoogle Scholar
  21. Weaver L., Michels H.T., Keevil C.W. (2008). Survival ofClostridium difficile on copper and steel: futuristic options for hospital hygiene. J. Hosp. Infect., 68: 145–151.CrossRefPubMedGoogle Scholar
  22. Wheeldon L.J., Worthington T., Lambert P.A., Hilton A.C., Lowden C.J., Elliott T.S. (2008). Antimicrobial efficacy of copper surfaces against spores and vegetative cells ofClostridium difficile: the germination theory. J. Antimicrob. Chemother., 62: 522–525.CrossRefPubMedGoogle Scholar
  23. Yates H.M., Brook L.A., Sheel D.W., Ditta I.B., Steele A., Foster H.A. (2008). The growth of copper oxides on glass by flame assisted chemical vapour deposition. Thin Solid Films, doi: 10.1016/j.tsf.2008.06.071Google Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  • Simon W. J. Gould
    • 1
    Email author
  • Mark D. Fielder
    • 1
  • Alison F. Kelly
    • 1
  • Marina Morgan
    • 2
  • Jackie Kenny
    • 3
  • Declan P. Naughton
    • 1
  1. 1.School of Life SciencesKingston UniversityLondonUK
  2. 2.Royal Devon and Exeter HospitalExeterUK
  3. 3.The Royal Marsden HospitalSutton, SurreyUK

Personalised recommendations