Advertisement

Annals of Microbiology

, 59:105 | Cite as

A novel alkaline and low-temperature lipase ofBurkholderia cepacia isolated from Bohai in China for detergent formulation

  • HaiKuan Wang
  • RuiJuan Liu
  • FuPing Lu
  • Wei Qi
  • Jing Shao
  • HuiJing Ma
Industrial Microbiology Original Articles

Abstract

The bacterial strain LP08 was isolated from soil collected from bay of Bohai, China. The sequence of 16S rDNA of strain LP08 showed 99% homology toBurkholderia cepacia. The lipase fromBurkholderia cepacia LP08 was purified by ammonium sulphate precipitation, ion exchange chromatography and Sephadex G-75 chromatography. The characterization of the lipase exhibited maximum activity at 30 °C and pH 9.0. The lipase retained 63, 66, 74, and 95% of its maximum activity at 10, 15, 20 and 25 °C respectively. The lipase activity was promoted in the presence of commercial detergent, sodium cholate, sodium taurocholate, glycerine and NaCl, while was little inhibited in the presence of Triton X-100, Tween-20, Tween-80, SDS, saponin. The present lipase was highly stable towards oxidizing agents and was stable after 1 h at 25 °C in the presence of hydrogen peroxide, sodium hypochlorite and sodium perborate. The results suggest that the lipase fromBurkholderia cepacia LP08 showed good potential for application in the detergent formulation.

Key words

Burkholderia cepacia alkaline lipase low-temperature lipase purification detergent 

References

  1. Alquati C., Gioia L.D., Santarossa G., Alberghina L., Fantucci P., Lotti M. (2002). The cold-active lipase ofPseudomonas fragi heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem., 269: 3321–3328.CrossRefPubMedGoogle Scholar
  2. Dharmsthiti S., Kuhasuntisuk B. (1998). Lipase fromPseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment. J. Ind. Microbiol. Biotechnol., 21: 75–80.CrossRefGoogle Scholar
  3. Eltaweel M.A., Rahman R.N.Z.A., Salleh A.B., Basri M. (2005). An organic solvent-stable lipase fromBacillus sp. strain 42. Annals of Microbiology, 55 (3): 187–192.Google Scholar
  4. Fernandes M.L.M., Saad E.B., Meira J.A., Mitchell D.A., Ramos L.P., Krieger N. (2007). Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J. Mol. Catal. B-Enzym., 44: 8–13.CrossRefGoogle Scholar
  5. Gao X.G., Cao S.G., Zhang K.C. (2000). Production, properties and application to nonaqueous enzymatic catalysis of lipase from a newly isolatedPseudomonas strain. Enzyme Microb. Technol., 27: 74–82.CrossRefGoogle Scholar
  6. Gupta R., Gupta N., Rathi P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol., 64: 763–781.CrossRefPubMedGoogle Scholar
  7. Hasan F., Shah A.A., Hameed A. (2006). Industrial applications of microbial lipases. Enzyme Microb. Technol., 39 (2): 235–251.CrossRefGoogle Scholar
  8. Karadzic I., Masui A., Zivkovic L.I., Fujiwara N. (2006). Purification and characterization of an alkaline lipase fromPseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J. Biosci. Bioeng., 102: 82–89.CrossRefPubMedGoogle Scholar
  9. Kulkarni N., Gadre R.V. (2002). Production and properties of an alkaline, thermophilic lipase fromPseudomonas fluorescens NS2W. J. Ind. Microbiol. Biotechnol., 28: 344–348.CrossRefPubMedGoogle Scholar
  10. Li X.G., Lahitie M., Paivio M., Kanerva L.T. (2007). Enantioselective acylation of alcohols with fluorinated_-phenyl_-lactams in the presence ofBurkholderia cepacia lipase. Tetrahedron-Asymmetry, 18: 1567–1573.CrossRefGoogle Scholar
  11. Lin S.F., Chiou C.M., Yen C.M., Tsai Y.C. (1996). Purification and partial characterization of an alkaline lipase fromPseudomonas pseudoalcaligenes F-111. Appl. Environ. Microbiol., 62 (3): 1093–1095.PubMedGoogle Scholar
  12. Liu C.H., Lu W.B., Chang J.S. (2006). Optimizing lipase production ofBurkholderia sp. by response surface methodology. Process Biochem., 41: 1940–1944.CrossRefGoogle Scholar
  13. Mandrich L., Merone L., Pezzullo M., Cipolla L., Nicotra F., Rossi M., Manco G. (2005). Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J. Mol. Biol., 345: 501–512.CrossRefPubMedGoogle Scholar
  14. Maury S., Buisson P., Perrard A., Pierre A.C. (2005). Compared esterification kinetics of the lipase fromBurkholderia cepacia either free or encapsulated in a silica aerogel. J. Mol. Catal. B-Enzym., 32: 193–203.CrossRefGoogle Scholar
  15. Orcaire O., Buisson P., Pierre A.C. (2006). Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by trans-esterification reactions. J. Mol. Catal. B-Enzym., 42: 106–113.CrossRefGoogle Scholar
  16. Park D.S., Oh H.W., Heo S.Y., Jeong W.J., Shin D.H., Bas K.S., Park H.Y. (2007). Characterization of an extracellular lipase inBurkholderia sp. HY-10 isolated from a longicorn beetle. J. Microbiol., 45 (5): 409–417.PubMedGoogle Scholar
  17. Rathi P., Bradoo S., Saxena R.K., Gupta R. (2000). A hyper-thermostable, alkaline lipase fromPseudomonas spp. with property of thermal activation. Biotechnol. Lett., 22: 495–498.CrossRefGoogle Scholar
  18. Rathi P., Saxena R.K., Gupta R. (2001). A novel alkaline lipase fromBurkholderia cepacia for detergent formulation. Process Biochem., 37: 187–192.CrossRefGoogle Scholar
  19. Ruchi G., Ashun G., Khare S.K. (2007). Lipase from solvent tolerantPseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresource Technol., 99: 4796–4802.CrossRefGoogle Scholar
  20. Saisubramanian N., Edwinoliver N.G., Nandakumar N., Kamini N.R., Puvanakrishnan R. (2006). Efficacy of lipase fromAspergillus niger as an additive in detergent formulations: a statistical approach. J. Ind. Microbiol. Biotechnol., 33: 669–676.CrossRefPubMedGoogle Scholar
  21. Saxena R.K., Davidson W.S., Sheoran A., Giri B. (2003). Purification and characterization of an alkaline thermostable lipase fromAspergillus carneus. Process Biochem., 39: 239–247.CrossRefGoogle Scholar
  22. Sharma R., Chisti Y., Banerjee U.C. (2001). Production, purification, characterization, and applications of lipase. Biotechnol. Adv., 19: 627–662.CrossRefPubMedGoogle Scholar
  23. Sharma R., Soni S.K., Vohra R.M., Gupta L.K., Gupt J.K. (2002). Purification and characterisation of a thermostable alkaline lipase from a new thermophilicBacillus sp. RSJ-1. Process Biochem., 37: 1075–1084.CrossRefGoogle Scholar
  24. Umesh K.J., Roy U., Abhijit R.C., Bhaduri A.P., Roy P.K. (2003). Purification and characterization of an alkaline lipase from a newly isolatedPseudomonas mendocina PK-12CS and chemoselective hydrolysis of fatty acid ester. Bioorgan. Med. Chem., 11: 1041–1046.CrossRefGoogle Scholar
  25. Vorderwiilbecke T., Kieslich K., Erdmann H. (1992). Comparison of lipases by different assays. Enzyme Microb. Technol., 14: 631–649.CrossRefGoogle Scholar
  26. Wei H.N., Shi L.L., Wu B. (2008). Production and characteristics of an enantioselective lipase fromBurkholderia sp. GXU56. Chem. Eng. Technol., 31 (2): 258–264.CrossRefGoogle Scholar
  27. Yang J.K., Guo D.Y., Yan Y.J. (2007). Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase fromBurkholderia cepacia strain G63. J. Mol. Catal. B-Enzym., 45: 91–96.CrossRefGoogle Scholar
  28. Yu L.J., Xu Y., Wang X.Q., Yu, X.W. (2007). Highly enantioselective hydrolysis of dl-menthyl acetate to I-menthol by whole-cell lipase fromBurkholderia cepacia ATCC 25416. J. Mol. Catal. B-Enzym., 47: 149–154.CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Microbiology, Ministry of Education, College of BiotechnologyTianjin University of Science and TechnologyTianjinP.R. China

Personalised recommendations