Advertisement

Annals of Microbiology

, Volume 59, Issue 1, pp 17–23 | Cite as

Occurrence of multiple metal-resistance in bacterial isolates associated with transgenic white poplars (Populus alba L.)

  • Alma BalestrazziEmail author
  • Martina Bonadei
  • Emanuele Quattrini
  • Daniela Carbonera
Ecological and Environmental Microbiology Original Articles

Abstract

The occurrence of multiple metal-resistance was assessed in two bacterial collections, named Herbicide Resistant Bacteria (HRB) and Nuclease-Producing Bacteria (NPB) respectively, consisting of 15 and 11 isolates obtained from a loamy sand cultivated with transgenic white poplars (Populus alba L., cv ‘Vilafranca’) engineered for herbicide resistance. A third collection of 11 bacterial isolates, named Leaf-Associated Bacteria (LAB), obtained from the leaves of transgenic white poplars expressing theStSy gene for resveratrol production and from untransformed plants was evaluated. Resistance to Cd, Co, Cu, Pb and Zn was tested. As for the HRB collection, nine different phenotypes were monitored, which included tetra-, tri- and double-resistance. Tri- and double-metal resistance occurred also within the NPB and LAB collections. In both cases five different phenotypes were recovered. An additional investigation was carried out on the HRB-1c isolate, resistant to Cd, Co, Pb and Zn, which was previously demonstrated to produce indoleacetic acid, a plant-growth-promoting trait. Colorimetric assays, performed on the cell-depleted medium of HRB-1c liquid cultures grown in presence of heavy metals, confirmed that this trait was not affected. A 19-kb plasmid, possibly involved in the maintenance of the multiple metal-resistant phenotype, was detected in the HRB-1c cells.

Key words

leaf-associated bacteria multiple metal-resistance transgenic poplar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker-Austin C., Wright M.S., Stepanauskas R., McArthur J.V. (2006). Co-selection of antibiotic and metal resistance. Trends Microbiol., 14: 176–182.CrossRefPubMedGoogle Scholar
  2. Balestrazzi A., Allegro G., Confalonieri M. (2006). Genetically modified trees expressing genes for insect pest resistance. In: Fladung M., Ewald D., Eds, Tree Transgenesis: Recent Developments, Springer-Verlag, Berlin Heidelberg, pp. 253–273.Google Scholar
  3. Balestrazzi A., Bonadei M., Carbonera D. (2007). Nuclease-producing bacteria in soil cultivated with herbicide resistant transgenic white poplars. Ann. Microbiol., 57: 531–536.CrossRefGoogle Scholar
  4. Balestrazzi A., Bonadei M., Zelasco S., Quattrini E., Calvio C., Galizzi A., Carbonera D. (2008). Recovery of useful traits from isolates inhabiting an agricultural soil cultivated with herbicide-resistant poplars. Can. J. Microbiol., 54: 201–208.CrossRefPubMedGoogle Scholar
  5. Castiglione S., Franchin C., Fossati T., Lingua G., Torrigiani P., Biondi S. (2007). High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba cv. Villafranca). Chemosphere, 67: 1117–1126.CrossRefPubMedGoogle Scholar
  6. Collins Y.E., Stotzky G. (1989). Factors affecting the toxicity of heavy metals to microbes. In: Beveridge T.J., Doyle R.J., Eds, Metal Ions and Bacteria, John Wiley and Sons Inc., New York, pp. 31–90.Google Scholar
  7. Confalonieri M., Belenghi B., Balestrazzi A., Negri S., Facciotto G., Schenone G., DelleDonne M. (2000). Transformation of elite white poplar (P. alba) cv Villafranca and evaluation of herbicide resistance. Plant Cell Rep., 19: 978–982.CrossRefGoogle Scholar
  8. Dell’Amico E., Mazzocchi M., Cavalca L., Allievi L., Andreoni V. (2008). Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiol. Res., 163: 671–683.CrossRefPubMedGoogle Scholar
  9. Diaz-Ravina M., Baath E., Frostegard A. (1994). Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique. Appl. Environ. Microbiol., 60: 2238–2247.PubMedGoogle Scholar
  10. Duxbury T., Bicknell B. (1983). Metal-tolerant bacterial populations from natural and metal polluted soils. Soil Biol. Biochem., 9: 105–112.Google Scholar
  11. Figueira E.M.A.P., Lima A.I.G., Pereira S.I.A. (2005). Cadmium tolerance plasticity inRhizobium leguminosarum bv.viciae: glutathione as a detoxifying agent. Can. J. Microbiol., 51: 7–14.CrossRefPubMedGoogle Scholar
  12. Giorcelli A., Sparvoli F., Mattivi F., Balestrazzi A., Tava A., Vrhovsek U., Bollini R., Confalonieri M. (2004). Expression of stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant compounds resveratrol glucosides. Trans. Res., 13: 203–214.CrossRefGoogle Scholar
  13. Gonzalez J.M. Jr, Carlton B.C. (1984). A large transmissable plasmid is required for crystal toxin production inBacillus thuringiensis varietyisraelensis. Plasmid, 11: 28–38.CrossRefPubMedGoogle Scholar
  14. Gordon S.A., Weber R.P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiol., 26: 192–195.CrossRefPubMedGoogle Scholar
  15. He Z.L., Yang X.E., Stoffella P.J. (2005). Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol., 19: 125–140.CrossRefPubMedGoogle Scholar
  16. Jing Y., He Z., Yang X. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J. Zhejiang Univ. Sci. B, 8: 192–207.CrossRefPubMedGoogle Scholar
  17. Kamnev A.A., Tugarova A.V., Antonyuk L.P., Tarantilis P.A., Polissiou M.G., Gardiner P.H. (2005). Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains ofAzospirillum brasilense. J. Trace Elem. Med. Biol., 19: 91–95.CrossRefPubMedGoogle Scholar
  18. Kuffner M., Poschenrieder M., Wieshammer G., Gorfer M., Sessitsch A. (2008). Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil, 304: 35–44.CrossRefGoogle Scholar
  19. Lingua G., Franchin C., Todeschini V., Castiglione S., Biondi S., Burlando B., Parravicini V., Torrigiani P., Berta G. (2008). Arbuscolar mycorrhizal fungi differnntially affect the response to high zinc concentrations of two registered poplar clones, Villafranca (Populus alba L.) and Jean Pourtet (Populus nigra L.). Environ. Pollut., 153: 137–147.CrossRefPubMedGoogle Scholar
  20. Lone M.I., He Z., Stoffella P.J., Yang X. (2008). Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J. Zhejiang Univ. Sci. B, 9: 210–220.CrossRefPubMedGoogle Scholar
  21. Mendez M.O., Maier R.M. (2008). Phytostabilization of mine tailings in arid and semiarid environments — an emerging remediation technology. Environ. Health Perspect., 116: 278–283.PubMedCrossRefGoogle Scholar
  22. Mergeay M. (1991). Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol., 9: 17–24.CrossRefPubMedGoogle Scholar
  23. Nies D.H. (1992). Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid, 27: 17–28.CrossRefPubMedGoogle Scholar
  24. Nies D.H. (1999). Microbial heavy metal resistance. Appl. Microbiol. Biotechnol., 51: 730–750.CrossRefPubMedGoogle Scholar
  25. O’Halloran T. (1993). Transition metals in control of gene expression. Science, 261: 717–725.Google Scholar
  26. Pereira S.I., Lima A.I., Figueira E.M. (2006). Screening possible mechanisms mediating cadmium resistance inRhizobium leguminosarum bv. viciae isolated from contaminated portuguese soils. Microb. Ecol., 52: 176–186.CrossRefPubMedGoogle Scholar
  27. Peuke A.D., Rennenberg H. (2006). Heavy metal resistance and phytoremediation with transgenic trees. In: Fladung M., Ewald D., Eds, Tree Transgenesis: Recent Developments, Springer-Verlag, Berlin Heidelberg, pp. 253–273.Google Scholar
  28. Roane T.M. (1999). Lead resistance in two isolates from heavy metal-contaminated soils. Microb. Ecol., 37: 218–224.CrossRefPubMedGoogle Scholar
  29. Rutherford J.C., Cavet J.S., Robinson N.J. (1995). Cobaltdependent transcriptional switching by a dual-effector MerRlike protein regulates a cobalt-exporting variant CPx-type ATPase. J. Biol. Chem., 274: 25827–25832.CrossRefGoogle Scholar
  30. Ryan R., Ryan D., Dowling D. (2008). Multiple metal resistant transferable phenotypes in bacteria as indicators of soil contamination with heavy metals. J. Soils Sedim., 5: 95–100.CrossRefGoogle Scholar
  31. Sambrook J., Fritsch E.F., Maniatis T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  32. Shakoori A.R., Muneer B. (2002). Copper-resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater. Folia Microbiol., 47: 43–50.CrossRefGoogle Scholar
  33. Siciliano S.D., Fortin N., Mihoc A., Wisse G., Labelle S., Beaumier D., Ouellette D., Real R., Whyte L.G., Banks M.K., Schwab P., Lee K., Greer C.W. (2001). Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol., 67: 2496–2475.CrossRefGoogle Scholar
  34. silver S. (1992). Plasmid-determined metal resistance mechanisms: range and overview. Plasmid, 27: 1–3.CrossRefPubMedGoogle Scholar
  35. Thorgensen M.P., Downs D. (2007). Cobalt targets multiple metabolic processes inSalmonella enterica. J. Bacteriol., 189: 7774–7781.CrossRefGoogle Scholar
  36. Yoshida N., Murooka Y., Ogawa K. (1998). Heavy metal particle resistance inThiobacillus intermedius 13-1 isolated from corroded concrete. J. Ferment. Bioeng., 85: 630–633.CrossRefGoogle Scholar
  37. Zaidi S., Usmani S., Singh B.R., Musarrat J. (2006). Significance ofBacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation inBrassica juncea. Chemosphere, 64: 991–997.CrossRefPubMedGoogle Scholar
  38. Zelasco S., Reggi S., Calligari P., Balestrazzi A., Bongiorni C., Quattrini E., Delia G., Bisoffi S., Fogher C., Confalonieri M. (2006). Expression of theVitreoscilla hemoglobin (VHb) — encoding gene in transgenic white poplar: plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative stress conditions. Mol. Breed., 17: 201–216.CrossRefGoogle Scholar
  39. Zelasco S., Ressegotti V., Confalonieri M., Carbonera D., Calligari P., Bonadei M., Bisoffi S., Yamada K., Balestrazzi A. (2007). Evaluation of MAT-vector system in white poplar (Populus alba L.) and production ofipt marker-free transgenic plants by ‘single-step transformation’. Plant Cell Tiss. Org. Cult., 91: 61–72.CrossRefGoogle Scholar
  40. Zhigang A., Cuijie L., Yuangang Z., Yeljie D., Watcher A., Gromes R., Rausch T. (2006). Expression of BjMT2, a metallothionein 2 fromBrassica juncea, increases copper and cadmium tolerance inEscherichia coli andArabidopsis thaliana, but inhibits root elongation inArabidopsis thaliana seedlings. J. Exp. Bot., 57: 3575–3582.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  • Alma Balestrazzi
    • 1
    Email author
  • Martina Bonadei
    • 1
  • Emanuele Quattrini
    • 2
  • Daniela Carbonera
    • 1
  1. 1.Dipartimento di Genetica e MicrobiologiaUniversità di PaviaPavia
  2. 2.C.E.T.A.S.Università degli Studi di MilanoTavazzano, LodiItaly

Personalised recommendations