Annals of Microbiology

, 58:661 | Cite as

Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties

Food Microbiology Original Articles


A combination of eight strains comprising ofLactobacillus plantarum, Enterococcus faecium andLeuconostoc mesenteroides subsp.mesenteroides isolated from molasses, olives, beer and kefir were studied for growth at low pH and ox-bile resistance. pH neutralised cell-free supernatants from 24-h-old cultures inhibited the growth ofEnterococcus faecium, Lactobacillus sakei, Lactococcus lactis subsp.lactis, Listeria innocua andListeria ivanovii subsp.ivanovii. Good growth was recorded in MRS broth supplemented with 0.3% (w/v) ox-bile.Lactobacillus plantarum ST28MS and ST26MS,Enterococcus faecium ST311LD andLeuconostoc mesenteroides subsp.mesenteroides ST33LD grew well in the presence of 0.6% (w/v) ox-bile. All eight strains grew well in MRS broth, adjusted to pH 7.0. Good growth ofEnterococcus faecium ST311LD,Leuconostoc mesenteroides subsp.mesenteroides ST33LD andLactobacillus plantarum 423 was recorded in MRS broth with an initial pH of 4.0. Auto cell-aggregation ranged from 74.3% forLactobacillus plantarum ST23LD to 95.4% forLactobacillus plantarum ST28MS. Different levels of co-aggregation were recorded between the eight strains andEnterococcus faecium HKLHS,Lactobacillus sakei DSM 20017,Lactococcus lactis subsp.lactis HV219,Listeria innocua LMG 13568 and UWC N27, andListeria ivanovii subsp.ivanovii ATCC 19119. Growth of the eight strains was inhibited by several antibiotics and anti-inflammatory medicaments containing ibuprofen, hydrochlorothiaziden and thioridazine hydrochlorid. Sodium diclofenac inhibited the growth ofLactobacillus plantarum ST8KF and ST341LD,Enterococcus faecium ST311LD andLeuconostoc mesenteroides subsp.mesenteroides ST33LD. Dimenhydrinate inhibited the growth of onlyLactobacillus plantarum ST8KF. Adherence to Caco-2 cells ranged from 8.0 to 1.3%. All eight strains contain theMub, MapA andEF-Tu genes, as determined by amplification with gene-specific primers.

Key words

probiotics bacteriocins Lactobacillus plantarum Enterococcus faecium Leuconostoc mesenteroides subsp. mesenteroides 


  1. Alterman E.W.M.R., Azcarate-Peril M.A., Barrangou R., Buck B.L., McAuliffe O., Souther N., Dobson A., Duong T., Callanan M., Lick S., Hamrick A., Cano R., Klaenhammer T.D. (2005). Complete genome sequence of the probiotic lactic acid bacteriumLactobacillus acidophilus NCFM. Proc. Nat. Acad. Sci., 102: 3906–3912.CrossRefGoogle Scholar
  2. Boekhorst J., Wells M., Kleerebezem M., Siezen R.J. (2006). The predicted secretome ofLactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology, 152: 3175–3183.CrossRefPubMedGoogle Scholar
  3. Boris S., Barbes C. (2000). Role played by lactobacilli in controlling the population of vaginal pathogens. Microb. Infect., 4: 543–546.CrossRefGoogle Scholar
  4. Brink M., Todorov S.D., Martin J.H., Senekal M., Dicks L.M.T. (2006). The effect of prebiotics on production of antimicrobial compounds, resistance to growth at low pH and in the presence of bile, and adhesion of probiotic cells to intestinal mucus. J. Appl. Microbiol., 100: 813–820.CrossRefPubMedGoogle Scholar
  5. Caridi A. (2002). Selection ofEscherichia coli-inhibiting strains ofLactobacillus paracasei subsp.paracasei. J. Ind. Microbiol. Biotechnol., 29: 303–308.CrossRefPubMedGoogle Scholar
  6. Chan E.S., Zhang, Z. (2005). Bioencapsulation by compression coating of probiotic bacteria for their protection in an acidic medium. Process Biochem., 40: 3346–3351.CrossRefGoogle Scholar
  7. Courvalin P. (2006). Antibiotic resistance: The pros and cons of probiotics. Digestive and Liver Disease, 38 (Suppl. 2), S261–265.CrossRefGoogle Scholar
  8. Dellaglio F.V., Bottazzi, Trostelli L.D. (1973). Deoxyribonucleic acid homology and vase composition in some thermophilic lactobacilli. J. Gen. Microbiol., 74: 289–297.PubMedGoogle Scholar
  9. De Vries M.C., Vaughan E.E., Kleerebezem M., De Vos W.M. (2006).Lactobacillus plantarum — survivor, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J., 16: 1018–1028.CrossRefGoogle Scholar
  10. Drosinos E.H., Mataragas M., Metaxopoulos J. (2006). Modeling of growth and bacteriocin production byLeuconostoc mesenteroides E131. Meat Sci., 74: 690–696.CrossRefGoogle Scholar
  11. Erdinc F.S., Yetkin M.A., Hatipoglu C.A., Yucel M., Karakoc A.E., Cevik M.A., Tulek N. (2006). Five-year surveillance of nosocomial infections in Ankara Training and Research Hospital. J. Hosp. Infect., 64: 391–396.CrossRefPubMedGoogle Scholar
  12. Fontán M.C.G., Lorenzo J.M., Parada A., Franco I., Carballo J. (2007). Microbiological characteristics of “androlla”, a Spanish traditional pork sausage. Food Microbiol., 24: 52–58.CrossRefGoogle Scholar
  13. Fooks L.J., Fuller R., Gibson G.R. (1999). Prebiotics, probiotics and human gut microbiology. Int. Dairy J., 9: 53–61.CrossRefGoogle Scholar
  14. Furtado G.H.C., Mendes R.E., Pignatari A.C.C., Wey S.B., Medeiros E.A.S. (2006). Risk factors for vancomycin-resistantEnterococcus faecalis bacteremia in hospitalized patients: An analysis of two case-control studies. Am. J. Inf. Control, 34: 447–451.CrossRefGoogle Scholar
  15. Gaucher E.A., Miyamoto M.M., Benner S.A. (2001). Function-structure analysis of proteins using covarion-based evolutionary approaches: Elongation factors. Proc. Nat. Acad. Sci. USA, 98: 548–542.CrossRefPubMedGoogle Scholar
  16. Granato D.G.E.B., Pridmore R.D., Marvin L., Rouvet M., Corthesy-Theulaz I.E. (2004). Cell surface-associated elongation factor Tu mediates the attachment ofLactobacillus johnsonii NCC533(La1) to human intestinal cells and mucins. Infect. Immun., 72: 2160–2169.CrossRefPubMedGoogle Scholar
  17. Guipta P.K., Mital B.K., Garg S.K. (1996). Characterization ofLactobacillus acidophilus strains for use as dietary adjunct. Int. J. Food Microbiol., 29: 105–109.CrossRefGoogle Scholar
  18. Haller D., Colbus H., Ganzle M.G., Scherenbacher P., Bode C., Hammes W.P. (2001). Metabolic and functional properties of lactic acid bacteria in the gastro-intestinal ecosystem: A comparativein vitro study between bacteria of intestinal and fermented food origin. Syst. Appl. Microbiol., 24: 218–226.CrossRefPubMedGoogle Scholar
  19. Havenaar R., Ten Brink B., Huis in’t Veld J.H.C. (1992). Selection of strains for probiotic use. In: Fuller R., Ed., Probiotics: The Scientific Basis, Chapman and Hall, London.Google Scholar
  20. Herreros M.A., Arenas R., Sandoval M.H., Castro J.M., Fresno J.M., Tornadijo M.E. (2007). Effect of addition of native cultures on characteristics of Armada cheese manufactured with pasteurized milk: A preliminary study. Int. Dairy, 17: 328–335.CrossRefGoogle Scholar
  21. Ivanova I., Miteva V., Stefanova Ts., Pantev A., Budakov I., Danova S., Moncheva P., Nikolova I., Dousset X., Boyaval P. (1998). Characterization of a bacteriocin produced byStreptococcus thermophilus 81. Int. J. Food Microbiol., 42: 147–158.CrossRefPubMedGoogle Scholar
  22. Kleerebezern M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O.P., Leer R., Tarchini R., Peters S.A., Sandbrink H.M., Fiers M.W.E.J., Stiekema W., Lankhorst R.M.K., Bron P.A., Hoffer S.M., Groot M.N.N., Kerkhoven R., de Vries M., Ursing B., de Vos W.M., Siezen R.J. (2003). Competitive genome sequence ofLactobacillus plantarum WCFS1. Proc. Nat. Acad. Sci. USA, 100: 1990–1995.CrossRefGoogle Scholar
  23. Lepargneur J.P., Rousseau V. (2002). Protective, role of theDoderlein flora. J. Gynecol. Obstr. Biol. Reprod., 31: 485–494.Google Scholar
  24. Malik A., Sakamoto M., Hanazaki S., Osawa M., Suzuki T., Tochigi M., Kakii K. (2003). Co-aggregation among non-flocculating bacteria isolated from activated sludge. Appl. Environ. Microbiol., 69: 6056–6063.CrossRefPubMedGoogle Scholar
  25. Mainville I., Arcand Y., Farnworth E.R. (2005). A dynamic model that simulates the human upper gastro-intestinal tract for the study of probiotics. Int. J. Food Microbiol., 99: 287–296.CrossRefPubMedGoogle Scholar
  26. Messi P., Bondi M., Sabia C., Battini, R., Manicardi G. (2001). Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by aLactobacillus plantarum strain. Int. J. Food Microbiol., 64: 193–198.CrossRefPubMedGoogle Scholar
  27. Park Y.S., Lee J.Y., Kim Y.S., Shin D.H. (2002). Isolation and characterization of lactic acid bacteria from fesec of newborn baby and from dongchimi. J. Agric. Food Chem., 24: 2531–2536.CrossRefGoogle Scholar
  28. Park S.C., Hwang M.H., Kim Y.H., Kim J.C., Song J.C., Lee K.W., Jeong K.S., Rhee M.H., Kim K.S., Kim T.W. (2006). Comparison of pH and bile resistance ofLactobacillus acidophilus strains isolated from rat, pig, chicken, and human sources. World J. Microbiol. Biotechnol., 22: 35–37.CrossRefGoogle Scholar
  29. Powell J.E., Witthuhn R.C., Todorov S.D., Dicks L.M.T. (2007). Characterization of bacteriocin ST8KF produced by a kefir isolateLactobacillus plantarum ST8KF. Int. Dairy J., 17: 190–198.CrossRefGoogle Scholar
  30. Ramiah K., Van Reenen C.A., Dicks L.M.T. (2007). Expression of the mucus adhesion genesMub andMapA, adhesion-like factorEF-Tu and bacteriocin geneplaA ofLactobacillus plantarum 423, monitored with real-time PCR. Int. J. Food Microbiol., 113: 405–409.CrossRefGoogle Scholar
  31. Ramiah K., Van Reenen C.A., Dicks L.M.T. (2008). Surfacebound proteins ofLactobacillus plantarum 423 that contributes to adhesion of Caco-2 cells, and their role in competitive exclusion and displacement ofClostridium sporogenes andEnterococcus faecalis. Research in Microbiology, 159: 470–475.CrossRefPubMedGoogle Scholar
  32. Reid G., Burton J. (2002). Use ofLactobacillus to prevent infections by pathogenic bacteria. Microb. Infect., 4: 319–324.CrossRefGoogle Scholar
  33. Reid G., Friendship R. (2002). Alternatives to antibiotic use: probiotics for the gut. Anim. Biotechnol., 13: 97–112.CrossRefPubMedGoogle Scholar
  34. Roos S., Jonsson H. (2002). A high-molecular-mass cell-surface protein fromLactobacillus reuteri 1063 adheres to mucus components. Microbiology, 148: 433–442.PubMedGoogle Scholar
  35. Ruiz-Barba J.L., Floriano B., Maldonado-Barragán A., Jiménez-Díaz R. (2007). Molecular analysis of the 21-kb bacteriocin-encoding plasmid pEF1 fromEnterococcus faecium 6T1a. Plasmid, 57: 175–181.CrossRefPubMedGoogle Scholar
  36. Saarela M., Mogensen G., Fonden R., Matto J., Mattila-Sandholm T. (2002). Probiotic bacteria: safety, functional and technological properties. J. Bacteriol., 84: 197–215.Google Scholar
  37. Sajur S.A., Saguir F.M., Manca de Nadra M.C. (2007). Effect of dominant specie of lactic acid bacteria from tomato on natural microflora development in tomato purée. Food Control, 18: 594–600.CrossRefGoogle Scholar
  38. Satoh E., Leer R.J., Rojas M., Conway P.L., Pouwels P.H. (2000). The gene encoding the adhesion promoting protein MapA fromLactobacillus reuteri 104R is part of an operon whose expression is controlled by a mechanism of transcription attenuation, involving cysteine. Genebank Accession Number AJ 293860. Unpublished.Google Scholar
  39. Temmerman R., Pot B., Huys G., Swings J. (2002). Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food. Microbiol., 81: 1–10.CrossRefGoogle Scholar
  40. Todorov S.D., Dicks L.M.T. (2005a).Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gramnegative bacteria. Enzyme Microb. Technol., 36: 318–326.CrossRefGoogle Scholar
  41. Todorov S.D., Dicks L.M.T. (2005b). Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J Basic Microbiol., 45: 312–322.CrossRefPubMedGoogle Scholar
  42. Todorov S.D., Danova S.T., Van Reenen C.A., Meincken M., Dinkova G., Ivanova I.V., Dicks L.M.T. (2006). Characterization of bacteriocin HV219, produced byLactococcus lactis subsp.lactis HV219 isolated from human vaginal secretions. J. Basic Microbiol., 46: 226–238.CrossRefPubMedGoogle Scholar
  43. Todorov S.D., Botes M., Danova S.T., Dicks L.M.T. (2007). Probiotic properties ofLactococcus lactis subsp.lactis HV219, isolated from human vaginal secretions. J. Appl. Microbiol., 103: 629–639.CrossRefPubMedGoogle Scholar
  44. Todorov S.D., Botes M., Guigas C., Schillinger U., Wiid I., Wachsman M.B., Holzapfel W.H., Dicks L.M.T. (2008). Boza, a natural source of probiotic lactic acid bacteria. J. Appl. Microbiol., 104: 465–477.PubMedGoogle Scholar
  45. Torres-Llanez M.J., Vallejo-Cordoba B., Díaz-Cinco M.E., Mazorra-Manzano M.A., González-Córdova A.F. (2006). Characterization of the natural microflora of artisanal Mexican Fresco cheese. Food Control, 17: 683–690.CrossRefGoogle Scholar
  46. Tuomola E.M., Salminen S. (1998). Adhesion of some probiotic and dairyLactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol., 41: 45–51.CrossRefPubMedGoogle Scholar
  47. Van Reenen C.A., Dicks L.M.T., Chikindas M.L. (1998). Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced byLactobacillus plantarum. J. Appl. Microbiol., 84: 1131–1137.CrossRefPubMedGoogle Scholar
  48. Velraeds M., Van De Belt-Gritter B., Van Der Mei H., Reid G., Busscher H. (1998). Interference in initial adhesion of uropathogenic bacteria and yeast and silicone rubber byLactobacillus acidophilus biosurfactant. J. Med. Microbiol., 47: 1081–1085.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of StellenboschMatieland (Stellenbosch)South Africa

Personalised recommendations