Annals of Microbiology

, 58:655 | Cite as

Characterisation of maltose metabolism in lean dough by lagging and non-lagging baker’s yeast strains

Food Microbiology Original Articles

Abstract

Baker’s yeast,Saccharomyces cerevisiae, is a key microorganism used in the baking industry. While the preferred substrate for baker’s yeast is generally glucose, the predominant carbohydrate in lean dough is maltose. Therefore, in order to improve the leavening properties of lean dough, it is essential to improve maltose metabolism by the yeast. The objective of this study was to gain better insight into the regulation of the yeast maltose-transporter, maltose permease, and the maltose-cleaving enzyme, maltase, by glucose in lagging and non-lagging strains of baker’s yeast. Gas evolution in a low sugar model liquid dough (LSMLD) medium was used to select five out of ten industrial baker’s yeast strains for further investigation on the basis of varying metabolic characteristics. In all four of the lagging strains tested, both maltose permease and maltase were inhibited by glucose to some extent. In the relative non-lagging strain, which demonstrated the highest performance in LSMLD, it was shown that maltase was not inhibited by glucose. Based on our findings, it indicated that in lean dough leavening, it is the maltase that plays the essential role in maltose metabolism, rather than the maltose permease. Therefore, we propose that the lack of glucose repression on maltase activity is the most critical criterion in the development of non-lagging strains of baker’s yeast.

Key words

baker’s yeast (Saccharomyces cerevisiaelean dough leavening maltase maltose permease maltose metabolism 

References

  1. Angelov A.I., Karadjov G.I., Roshkova Z.G. (1996). Strains selection of baker’s yeast with improved technological properties. Food Res. Int., 29: 235–239.CrossRefGoogle Scholar
  2. Araújo C.A., Pacheco A., Almeida M.J., Martins I.S., Leão C., Sousa M.J. (2007). Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeastTorulaspora delbrueckii. Microbiology, 153: 898–904.CrossRefGoogle Scholar
  3. Bell P.J.L., Higgins V.J., Attfield P.V. (2001). Comparison of fermentative capacities of industrial baking and wild-type yeasts of the speciesSaccharomyces cerevisiae in different sugar media. Lett. Appl. Microbiol., 32: 224–229.CrossRefPubMedGoogle Scholar
  4. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.CrossRefPubMedGoogle Scholar
  5. Charron M.J., Dubin R.A., Michels C.A. (1986). Structural and functional analysis of theMAL1 locus ofSaccharomyces cerevisiae. Mol. Cell. Biol., 6: 3891–3899.PubMedGoogle Scholar
  6. Gancedo J.M. (1998). Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev., 62: 334–361.PubMedGoogle Scholar
  7. Gascón S., Lampen J.O. (1968). Purification of the internal invertase of yeast. J. Biol. Chem., 243: 1573–1577.PubMedGoogle Scholar
  8. Han E.K., Cotty F., Sottas C., Jiang H., Michels C.A. (1995). Characterization ofAGT1 encoding a general alpha-glucoside transporter fromSaccharomyces. Mol. Microbiol., 17: 1093–1107.CrossRefPubMedGoogle Scholar
  9. Hazell B.W., Attfield P.V. (1999). Enhancement of maltose utilization bySaccharomyces cerevisiae in medium containing fermentable hexoses. J. Ind. Microbiol. Biotech., 22: 627–632.CrossRefGoogle Scholar
  10. Higgins V.J., Braidwood M., Bell P., Bissinger P., Dawes I.W., Attfield P.V. (1999a). Genetic evidence that high noninduced maltase and maltose permease activities, governed byMALx3-encoded transcriptional regulators, determine efficiency of gas production by baker’s yeast in unsugared dough. Appl. Environ. Microbiol., 65: 680–685.PubMedGoogle Scholar
  11. Higgins V.J., Braidwood M., Bissinger P., Dawes I.W., Attfield P.V. (1999b). Leu343Phe substitution in the Malx3 protein ofSaccharomyces cerevisiae increases the constitutivity and glucose insensitivity of MAL gene expression. Curr. Genet., 35: 491–498.CrossRefPubMedGoogle Scholar
  12. Hino A., Mihara K., Nakashima K., Takano H. (1990). Trehalose levels and survival ratio of freeze-tolerant versus freezesensitive yeasts. Appl. Environ. Microbiol., 56: 1386–1391.PubMedGoogle Scholar
  13. Hirasawa R., Yokoigawa K. (2001). Leavening ability of baker’s yeast exposed to hyperosmotic media. FEMS Microbiol. Lett., 194: 159–162.CrossRefPubMedGoogle Scholar
  14. Hu Z., Yue Y., Jiang H., Zhang B., Sherwood P.W., Michels C.A. (2000). Analysis of the mechanism by which glucose inhibits maltose induction ofMAL gene expression inSaccharomyces. Genetics, 154: 121–132.PubMedGoogle Scholar
  15. Jiang H., Medintz I., Zhang B., Michels C.A. (2000). Metabolic signals trigger glucose-induced inactivation of maltose permease inSaccharomyces. J. Bacteriol., 182: 547–654.Google Scholar
  16. Klein C.J.L., Olsson L., Rønnow B., Mikkelsen J.D., Nielsen J. (1996). Alleviation of glucose repression of maltose metabolism byMIG1 disruption inSaccharomyces cerevisiae. Appl. Environ. Microbiol., 62: 4441–4449.PubMedGoogle Scholar
  17. Novak S., Zechner-Krpan V., Marić V. (2004). Regulation of maltose transport and metabolism inSaccharomyces cerevisiae. Food Tech. Biotechnol., 42: 213–218.Google Scholar
  18. Phaff H.J., Miller M.W., Mrak E.M. (1978). The Life Yeasts, 2nd edn., Harvard University Press, Cambridge, MA.Google Scholar
  19. Rincón A.M., Codón A.C., Castrejón F., Benítez T. (2001). Improved properties of baker’s yeast mutants resistant to 2-deoxy-D-glucose. Appl. Environ. Microbiol., 67: 4279–4285.CrossRefPubMedGoogle Scholar
  20. Rollini M., Casiraghi E., Pagani M.A., Manzoni M. (2007). Technological performances of commercial yeast strains (Saccharomyces cerevisiae) in different complex dough formulations. Eur. Food Res. Technol., 226: 19–24.CrossRefGoogle Scholar
  21. Serrano R. (1977). Energy requirements for maltose transport in yeast. Eur. J. Biochem., 80: 97–102.CrossRefPubMedGoogle Scholar
  22. Tangney M., Fleming A.B., Jorgensen P.L., Priest F.G. (1998). Regulation of maltose metabolism in stationary phase cultures of an asporogenous mutant ofBacillus licheniformis. J. Appl. Microbiol., 84: 201–206.CrossRefGoogle Scholar
  23. Verstrepen K.J., Iserentant D., Malcorps P., Derdelinckx G., Dijck P.V., Winderickx J., Pretorius I.S., Thevelein J.M., Delvaux F.R. (2004). Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol., 22: 531–537.CrossRefPubMedGoogle Scholar
  24. Wang X., Bali M., Medintz I., Michels C.A. (2002). Intracellular maltose is sufficient to inducedMAL gene expression inSaccharomyces cerevisiae. Eukaryot. Cell, 1: 696–703.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Industrial Microbiology, College of BioengineeringTianjin University of Science and TechnologyTianjinP.R. China

Personalised recommendations