Advertisement

Carbonates and Evaporites

, Volume 20, Issue 2, pp 182–194 | Cite as

Polyhalite occurrence in the Werra (Zechstein, upper Permian) peribaltic basin of Poland and Russia: Evaporite facies constraints

  • Tadeusz Marek Peryt
  • Hanna Tomassi-Morawiec
  • Grzegorz Czapowski
  • Sofiya P. Hryniv
  • Juan José Pueyo
  • Christoph J. Eastoe
  • Serhiy Vovnyuk
Article

Abstract

Polyhalite is a common constituent of many ancient evaporite sequences, especially Permian and Neogene ones, that is related to the Na−K−Mg−Cl−SO4 type of marine brines in those time intervals. There are four polyhalite deposits in the Zechstein of northern Poland, and more than ten polyhalite-bearing areas in the adjacent part of Russia, and they are commonly accompanied by K−Mg chlorides. Most polyhalite occurrences are related to the upper part of the Lower Werra Anhydrite and in most cases, polyhalite deposits are concentrated at the sulfate platform close to its boundary with platform slope, where they can pass horizontally into polyhalite beds occurring in the Oldest Halite. The bromine content in samples of the Oldest Halite range from 40–120 ppm and the composition of fluid inclusions in halite are characteristic of halite precipitated from seawater concentrated to the early and middle stages of halite precipitation. The δ18O and δ34S values for sulfates are 10.03‰–13.50‰ and 10.03‰–12.14‰, respectively, and the δ37Cl values for halites from −0.1‰ to +0.4‰ support their marine origin. Bromine distribution in the Oldest Halite and the occurrence of anhydrite intercalations indicate fluctuations of the brine density during the Oldest Halite deposition. The formation of polyhalite was preceded by the syndepositional dehydration of the original gypsum deposit and it appears that the anhydrite was then transformed to polyhalite by reaction with marine brines more evolved than those from which precipitated precursor calcium sulfate minerals. These concentrated brines could have been derived from the evaporation of marine brines and/or inflow of K- and Mg-rich brines that were formed in nearby shallow salt pans occurring in sulfate platform areas and thus sulfate platform areas and adjacent slopes of those platforms were predestined for polyhalite formation.

Keywords

Fluid Inclusion Halite Anhydrite Evaporite Lithofacies 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BRAITSCH, O., 1971, Salt Deposits. Their Origin and Composition. Springer, Berlin, 297 p.CrossRefGoogle Scholar
  2. CIARAPICA, G., PASSERI, L., and SCHREIBER, B.C., 1985, Una proposta di classificazione delle evaporiti solfatiche:Geologica Romana, v. 24, p. 219–232.Google Scholar
  3. CZAPOWSKI, G., 1987, Sedimentary Facies of the Oldest Rock Salt (NaI) of the Łeba Elevation (Northern Poland):Lecture Notes in Earth Sciences, v. 10, p. 207–224.CrossRefGoogle Scholar
  4. CZAPOWSKI, G., 1998, Genesis of the Zechstein Oldest Rock Salt in the Puck Bay Region (Sedimentological Study) (in Polish). Ph. D. Thesis, Central Geological Archive, Warszawa, 114 p.Google Scholar
  5. CZAPOWSKI, G., PERYT, T., and ANTONOWICZ, L., 1993, Facies and Palaeogeography of the Zechstein (Upper Permian) Oldest Halite (Na1) in Poland:Bulletin of the Polish Academy of Sciences, Earth Sciences, v. 41, p. 217–227.Google Scholar
  6. HARDIE, L.A., LOWENSTEIN, T.K., and SPENCER, R.J., 1985, The Problems of Distinguishing between Primary and Secondary Features in Evaporites,in B.C. Schreiber and H.L. Harner, eds., Sixth International Symposium on Salt. Salt Institute, Alexandria, VA, v. 1, p. 11–39.Google Scholar
  7. HOLSER, W.T., 1966, Diagenetic Polyhalite in Recent Salt from Baja California:American Mineralogist, v. 51, p. 99–109.Google Scholar
  8. HORITA, J., FRIEDMAN, T.J., LAZAR, B., and HOLLAND, H.D., 1991, The Composition of Permian Seawater:Geochimica et Cosmochimica Acta, v. 55, p. 417–432.CrossRefGoogle Scholar
  9. KADUNAS, V., 2001, Permian Halogenic Formation in Lithuania (Lithology, Geochemistry, Mineral Resources) (in Lithuanian, with English summary). Geologijos Institutas, Vilnius, 188 p.Google Scholar
  10. KORENEVSKIY, S.M., KAZANOV, Yu.V., and PROTOPOPOV, A.L., 1980, Potassium-Bearing of the Zechstein Halogenic Deposits of the Peri-Baltic Region (in Russian):Litologiya i poleznyye iskopaemyye, v. 6, p. 116–121.Google Scholar
  11. KORENEVSKIY, S.M., PROTOPOPOV, A.L., and SHAPOREV, A.A., 1983, Kainite Deposits in the Peri-Baltic Zechstein (in Russian):Litologiya i poleznyye iskopaemyye, v. 1, p. 71–80.Google Scholar
  12. KOVALEVICH, V.M., PERYT, T.M., and PETRICHENKO, O.I., 1998, Secular Variation in Seawater Chemistry during the Phanerozoic as Indicated by Brine Inclusions in Halite:Journal of Geology, v. 106, p. 695–712.CrossRefGoogle Scholar
  13. KOVALEVYCH, V.M., CZAPOWSKI, G., HALAS, S., and PERYT, T.M., 2000, Chemical Evolution of Brines in the Zechstein (Upper Permian) Evaporite Basins of Poland: Fluid Inclusion Study of Halite from the Rock Salt Units Na1 to Na4 (in Polish with English summary):Przeglad Geologiczny, v. 48, p. 448–454.Google Scholar
  14. KOVALEVYCH, V.M., PERYT, T.M., CARMONA, V., SYDOR, D.V., VOVNYUK, S.V., and HALAS, S., 2002, Evolution of Permian Seawater: Evidence from Fluid Inclusions in Halite:Neues Jahrbuch für Mineralogie Abhandlungen, v. 178, p. 27–62.Google Scholar
  15. KOWALEWICZ, W.M., 1992, Physico-Chemical Conditions of Origin of Zechstein Evaporites of the Baltic Region (in Polish with English summary):Przeglad Geologiczny, v. 40, p. 721–726.Google Scholar
  16. LONG, A., EASTOE, C.J., KAUFMANN, R.S., MARTIN, J.G., WIRT, L., and FINLEY, J.B., 1993, High-Precision Measurement of Chlorine Stable Isotope Ratios:Geochimica et Cosmochimica Acta, v. 59, p. 2163–2174.Google Scholar
  17. MORETTO, R., 1988, Observations on the Incorporation of the Trace Elements in Halite of Oligocene Sand Beds, Bourgen-Brasse Basin, France:Geochimica et Cosmochimica Acta, v. 52, p. 2809–2814.CrossRefGoogle Scholar
  18. ORTI CABO, F. PUEYO MUR, J.J., GEISLER-CUSSEY, D., and DULAU, M., 1984, Evaporitic Sedimentation in the Coastal Salinas of Santa Pola (Alicante, Spain):Revista d'Investigacions Geologiques, v. 38/39, p. 169–220.Google Scholar
  19. PERYT, T.M., 1989, Zechstein Deposition in the Polish Part of the Peri-Baltic Gulf:Bulletin of the Polish Academy of Sciences, Earth Sciences, v. 37, p. 103–119.Google Scholar
  20. PERYT, T.M., 1990, The Zechstein Upper Anhydrite (Alg) of the Polish Part of the Peri-Baltic Syneclise (in Polish with English summary):Biuletyn Państwowego Instytutu Geologicznego, v. 364, p. 5–29.Google Scholar
  21. PERYT, T.M., 1994, The Anatomy of a Sulphate Platform and Adjacent Basin System in the Leba Sub-Basin of the Lower Werra Anhydrite (Zechstein, Upper Permian), Northern Poland:Sedimentology, v. 41, p. 83–113.CrossRefGoogle Scholar
  22. PERYT, T.M., CZAPOWSKI, G., and GASIEWICZ, A., 1992, Facies and Paleogeography of the Zechstein of Western Part of the Peri-Baltic Syneclise (North Poland) (in Polish with English summary):Przeglad Geologiczny, v. 40, p. 223–233.Google Scholar
  23. PERYT, T.M., KASPRZYK, A., and ANTONOWICZ, L., 1996, Upper Werra Anhydrite (Zechstein, Upper Permian) in Poland:Bulletin of the Polish Academy of Sciences, Earth Sciences, v. 44, p. 121–130.Google Scholar
  24. PERYT, T.M., PIERRE, C., and GRYNIV, S.P., 1998, Origin of Polyhalite Deposits in the Zechstein (Upper Permian) Zdrada Platform (Northern Poland):Sedimentology, v. 45, p. 565–578.CrossRefGoogle Scholar
  25. PERYT, T.M. and KOVALEVICH, V.M. 1996, Origin of Anhydrite Pseudomorphs after Gypsum Crystals in the Oldest Halite (Werra, Upper Permian, Northern Poland):Zentralblatt für Geologie und Paläontologie, Teil I, p. 337–356.Google Scholar
  26. PIERRE, C., 1985, Polyhalite Replacement after Gypsum at Ojo de Liebre Lagoon (Baja California, Mexico): an Early Diagenesis by Mixing of Marine Brines and Continental Waters,in B.C. Schreiber and L. Harner, eds., Sixth International Symposium on Salt, Alexandria, VA, v. 1, p. 257–265.Google Scholar
  27. PIERRE, C. and FRITZ, B., 1984, Rémplacement précoce de gypse par la polyhalite: l'exemple de la bordure sud-orientale de la lagune d'Ojo de Liebre (Basse Californie, Mexique):Revue de Géologie Dynamique et de Géographie Physique, v. 25, p. 157–166.Google Scholar
  28. PIZON, A., PERYT, T.M., and DEBSKI, J., 1985, On the Depositional Environment of the Zechstein Polyhalites of the Puck Bay region (in Polish with English summary):Przeglad Geologiczny, v. 33, p. 659–663.Google Scholar
  29. PIZON, A. and WIERZCHOWSKA, H., 1984, Intra-Anhydrite and Intra-Salt Polyhalites in the Light of Detailed Studies (in Polish),in Sympozjum Górnictwo Surowców Chemicznych, Zbiorniki Podziemne, Środowisko Naturalne. Kraków, p. 319–332.Google Scholar
  30. POBORSKI, J., 1975, Halogenic Karst Phenomena in Upper Permian of Leba Elevation (in Polish with English summary):Przegląd Geologiczny, v. 23, p. 325–328.Google Scholar
  31. RICHTER-BERNBURG, G., 1985, Zechstein-Anhydrite. Fazies und Genese:Geologisches Jahrbuch, v. A85, 82 p.Google Scholar
  32. SCHREIBER, B.C. and EL TABAKH, M., 2000, Deposition and Early Alteration of Evaporites:Sedimentology, v. 47, Suppl. 1, p. 215–238.CrossRefGoogle Scholar
  33. SCHULZE, G., 1970, Beitrag zur Genese des Polyhalites im deutschen Zechsteinsalinar:Zeitschrift für angewandte Geologie, v. 16, p. 310–317.Google Scholar
  34. STEPNIEWSKI, M., 1973, Some Trace Elements in the Zechstein Salt Minerals from the Puck Bay Region (In Polish with English summary):Biuletyn Instytutu Geologicznego, v. 272, p. 7–68.Google Scholar
  35. STOLARCZYK, F., 1972, New Data on the Permian Deposits in the Eastern Part of the Peri-Baltic Syneclise (in Polish with English summary):Kwartalnik Geologiczny, v. 16, p. 113–130.Google Scholar
  36. TAMOŠIŪNAS, L., 1963, On the Bromide Distribution in the Zechstein Rock Salt of the Southern Peri-Baltic Region (in Russian):Voprosy geologii Litvy, v. 6, p. 569–577.Google Scholar
  37. TOMASSI-MORAWIEC, H., 1990, Geochemistry of Bromine in Formations of the Oldest Rock Salt in the Puck Gulf Region (in Polish with English summary):Biuletyn Państwowego Instytutu Geologicznego, v. 364, p. 31–59.Google Scholar
  38. TOMASSI-MORAWIEC, H., 2003, Geochemistry of the Zechstein Oldest Rock Salt (Na1) in the Puck Bay Region (Northern Poland) (in Polish with English summary):Przeglad Geologiczny, v. 51, p. 693–702.Google Scholar
  39. WAGNER, R. and PERYT, T.M., 1997, Possibility of Sequence Stratigraphic Subdivision of the Zechstein in the Polish Basin:Geological Quarterly, v. 41, p. 457–474.Google Scholar
  40. WERNER, Z., 1972, Potassium Salt Deposits in the Puck Bay Region (in Polish),in Przewodnik 44 Zjazdu Polskiego Towarzystwa Geologicznego, p. 37–46.Google Scholar
  41. ZAGORODNYKH, V.A., 1996, Mineral Resources of Upper Permian Deposits in the Kaliningrad Region:Lithology and Mineral Resources, v. 31, p. 86–94.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Tadeusz Marek Peryt
    • 1
  • Hanna Tomassi-Morawiec
    • 1
  • Grzegorz Czapowski
    • 1
  • Sofiya P. Hryniv
    • 2
  • Juan José Pueyo
    • 3
  • Christoph J. Eastoe
    • 4
  • Serhiy Vovnyuk
    • 2
  1. 1.Państwowy Instytut GeologicznyWarszawa
  2. 2.Institute of Geology and Geochemistry of Combustible MineralsNational Academy of Sciences of UkraineLvivUkraine
  3. 3.Departament de Geoquímica i PetrologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Department of GeosciencesUniversity of ArizonaTucsonUSA

Personalised recommendations