Annals of Microbiology

, Volume 57, Issue 4, pp 481–494 | Cite as

Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains

  • Noura Raddadi
  • Ameur Cherif
  • Hadda Ouzari
  • Massimo Marzorati
  • Lorenzo Brusetti
  • Abdellatif Boudabous
  • Daniele Daffonchio
Ecological and Environmental Microbiology Reviews

Abstract

The entomopathogenic bacteriumBacillus thuringiensis is widely used for the control of many agricultural insect pests and vectors of human diseases. Several studies reported also on its antibacterial and antifungal activities. However, to our knowledge there were no studies dealing with its capacity to act as a plant growth promoting bacterium. This review surveys the potential ofB. thuringiensis as a polyvalent biocontrol agent, a biostimulator and biofertiliser bacterium that could promote the plant growth. Also, discussed is the safety ofB. thuringiensis as a bacterium phylogenetically related toBacillus cereus the opportunistic human pathogen andBacillus anthracis, the etiological agent of anthrax.

Key words

Bacillus thuringiensis PGPR biocontrol biostimulation biofertilisation safety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles F., Morgan P., Saltveit M. (1992). Ethylene in Plant Biology, 2nd edn, Academic Press, New York.Google Scholar
  2. Agata N., Ohta M., Arakawa Y., Mori M. (1995). ThebceT gene ofBacillus cereus encodes an enterotoxic protein. Microbiology, 141: 983–988.PubMedGoogle Scholar
  3. Ahern M., Verschueren S., van Sinderen D. (2003). Isolation and characterization of a novel bacteriocin produced byBacillus thuringiensis strain B439. FEMS Microbiol. Lett., 220: 127–131.PubMedGoogle Scholar
  4. Arora N., Ahmad T., Rajagopal R., Bhatnagar R.K. (2003). A constitutively expressed 36 kDa exochitinase fromBacillus thuringiensis HD-1. Biochim. Biophys. Res. Commun., 307: 620–625.Google Scholar
  5. Baida G.E., Kuzmin N.P. (1995). Cloning and primary structure of a new hemolysin gene fromBacillus cereus. Biochim. Biophys. Acta, 1264: 151–154.PubMedGoogle Scholar
  6. Beecher D.J., Olsen T.W., Somers E.B., Wong A.C.L. (2000). Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine-preferring phospholipase C, and collagenase to virulence ofBacillus cereus endophthalmitis. Infect. Immun., 68: 5269–5276.PubMedGoogle Scholar
  7. Belimov A.A., Hontzeas N., Safronova V. I., Demchinskaya S.V., Piluzza G., Bullitta S., Glick B.R. (2005). Cadmium-tolerant plant growth-promoting bacteria associatedwith the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem., 37: 241–250.Google Scholar
  8. Benizri E., Piutti S., Verger S., Pagès L., Vercambre G., Poessel J.L., Michelot P. (2005). Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem., 37: 1738–1746.Google Scholar
  9. Bizzarri M.F., Bishop A.H. (2007). Recovery ofBacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hybridum) during a growing season. J. Invert. Pathol., 94: 38–47.Google Scholar
  10. Bloemberg G.V., Lugtenberg B.J.J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol., 4: 343–350.PubMedGoogle Scholar
  11. Blumer C., Haas D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol., 173: 170–177.PubMedGoogle Scholar
  12. Broderick N.A., Goodman R.M., Raffa K.F., Handelsman J. (2000). Synergy between zwittermicin A andBacillus thuringiensis subsp.kurstaki against gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol., 29: 101–107.Google Scholar
  13. Broderick N.A., Goodman R.M., Handelsman J., Raffa K.F. (2003). Effect of host diet and insect source on synergy of gypsy moth (Lepidoptera: Lymantriidae) mortality toBacillus thuringiensis subsp.kurstaki by zwittermicinA. Environ. Entomol., 32: 387–391.Google Scholar
  14. Broderick N.A., Raffa K.F., Handelsman J. (2006). Midgut bacteria required forBacillus thuringiensis insecticidal activity. PNAS, 103: 15196–15199.PubMedGoogle Scholar
  15. Broek A.V., Lambrecht M., Eggermont K., Vanderleyden J. (1999). Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene inAzospirillum brasilense. J. Bacteriol., 181: 1338–1342.Google Scholar
  16. Budarina Z.I., Nikitin D.V., Zenkin N., Zakharova M., Semenova E., Shlyapnikov M.G., Rodikova E. A., Masyukova S., Ogarkov O., Baida G.E., Solonin A.S., Severinov K. (2004). A newBacillus cereus DNA-binding protein, HlyIIR, negatively regulates expression ofB. cereus haemolysin II. Microbiology, 150: 3691–3701.PubMedGoogle Scholar
  17. Burd G.I., Dixon D.G., Glick B.R. (2000). Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol., 46: 237–245.PubMedGoogle Scholar
  18. çakmakçi R., Kantar F., Algur Ö.F. (1999). Sugar beet and barley yields in relation toBacillus polymyxa andBacillus megaterium var.phosphaticum inoculation. J. Plant Nutr. Soil Sci., 162: 437–422.Google Scholar
  19. Carlini C.R., Grossi-de-Sa M.F. (2002). Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon, 40: 1515–1539.PubMedGoogle Scholar
  20. Carlson C.R., Caugant D.A., Kolstø A.B. (1994). Genotypic diversity amongBacillus cereus andBacillus thuringiensis strains. Appl. Environ. Microbiol., 60: 1719–1725.PubMedGoogle Scholar
  21. Cendrowski S., MacArthur W., Hanna P. (2004).Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol., 51: 407–417.PubMedGoogle Scholar
  22. Chattopadhyay A., Bhatnagar N.B., Bhatnagar R. (2004). Bacterial insecticidal toxins. Crit. Rev. Microbiol., 30: 33–54.PubMedGoogle Scholar
  23. Chen J.J., Yu J.X., Tang L.X., Tang M.J., Shi Y.X., Pang Y. (2003). Comparison of the expression ofBacillus thuringiensis fulllength and N-terminally truncated vip 3A gene inEscherichia coli. J. Appl. Microbiol., 95: 310–316.PubMedGoogle Scholar
  24. Cherif A., Ouzari H., Daffonchio D., Cherif H., Ben Slama K., Hassen A., Jaoua S., Boudabous A. (2001). Thuricin 7: a novel bacteriocin produced byBacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol., 32: 243–247.PubMedGoogle Scholar
  25. Cherif A., Brusetti L., Borin S., Rizzi A., Boudabous A., Khyami-Horani H., Daffonchio D. (2003a). Genetic relationship in the ‘Bacillus cereus group’ by rep-PCR fingerprinting and sequencing of aBacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol.; 94: 1108–1119.PubMedGoogle Scholar
  26. Cherif A., Chehimi S., Limem F., Rokbani A., Hansen B.M., Hendriksen N.B., Daffonchio D., Boudabous A. (2003b). Purification and characterisation of the novel bacteriocin entomocine 9, and safety evaluation of its producer,Bacillus thuringiensis subsp.entomocidus HD9. J. Appl. Microbiol., 95: 990–1000.PubMedGoogle Scholar
  27. Cherif A., Rezgui W., Raddadi N., Daffonchio D., Boudabous A. (2006). Characterisation and partial purification of entomocin 110, a newly identified bacteriocin fromBacillus thuringiensis subsp.entomocidus HD110, Microbiol. Res. (Epub ahead of print).Google Scholar
  28. Chernin L., Ismailov Z., Haran S., Chet I. (1995). ChitinolyticEnterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol., 61: 1720–1726.PubMedGoogle Scholar
  29. Cibik R., Chapot-Chartier M.P. (2000). Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE. J. Appl. Microbiol., 89: 862–869.PubMedGoogle Scholar
  30. Costacurta A., Keijers V., Vanderleyden J. (1994). Molecular cloning and sequence analysis of anAzospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol. Gen. Genet., 243: 463–472.PubMedGoogle Scholar
  31. Costacurta A., Vanderleyden J. (1995). Accumulation of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol., 21: 1–18.PubMedGoogle Scholar
  32. Crickmore N., Zeigler D.R., Schnepf E., Van Rie J., Lereclus D., Baum J., Bravo A., Dean D.H. (2007). “Bacillus thuringiensis toxin nomenclature” (WWW document) http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/Google Scholar
  33. Crosa J.H., Walsh C.T. (2002). Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev., 66: 223–249.PubMedGoogle Scholar
  34. Bizani D., Dominguez A.P.M., Brandelli A. (2005). Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett. Appl. Microbiol., 41: 269–273.PubMedGoogle Scholar
  35. Daffonchio D., Cherif A., Borin S. (2000). Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the “Bacillus cereus group”, Appl. Environ. Microbiol., 66: 5460–5468.PubMedGoogle Scholar
  36. Daffonchio D., Raddadi N., Merabishvili M., Cherif A., Carmagnola L., Brusetti L., Rizzi A., Chanishvili N., Visca P., Sharp R., Borin S. (2005). A strategy for the identification ofBacillus cereus andBacillus thuringiensis strains near neighbor ofBacillus anthracis. Appl. Environ. Microbiol., 72: 1295–1301.Google Scholar
  37. Dalhammar G., Steiner H. (1984). Characterization of inhibitor A, a protease fromBacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur. J. Biochem., 139: 247–252.PubMedGoogle Scholar
  38. Damgaard P.H. (1995). Diarrhoeal enterotoxin production by strains ofBacillus thuringiensis isolated from commercialBacillus thuringiensis-based insecticides. FEMS Immunol. Med. Microbiol., 12: 245–250.PubMedGoogle Scholar
  39. Deikman J. (1997). Molecular mechanisms of ethylene regulation of gene transcription. Physiol. Plant., 100: 561–566.Google Scholar
  40. del Pozo J.C., Lopez-Matas M.A., Ramirez-Parra E., Gutierrez C. (2005). Hormonal control of the plant cell cycle. Physiol. Plant, 123: 173–183.Google Scholar
  41. Dong Y.H., Xu J.L., Li X.Z., Zhang L.H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence ofErwinia carotovora. Proc. Nat. Acad. Sci. USA, 97: 3526–3531.PubMedGoogle Scholar
  42. Dong Y.H., Wang L.H., Xu J.L., Zhang H.B., Zhang X.F., Zhang L.H. (2001). Quenching quorum-sensing dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411: 813–817.PubMedGoogle Scholar
  43. Dong Y.H., Gusti A.R., Zhang Q., Xu J.L., Zhang L.H. (2002). Identification of quorum-quencing N-acyl homoserine lactonases fromBacillus species. Appl. Environ. Microbiol., 68: 1754–1759.PubMedGoogle Scholar
  44. Dong Y.H., Zhang X.F., Xu J.L., Zhang L.H. (2004). InsecticidalBacillus thuringiensis silencesErwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl. Environ. Microbiol., 70: 954–960.PubMedGoogle Scholar
  45. Douds D.D., Nagahashi G., Pfeffer P.E., Kayser W.M., Reider C. (2005). On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can. J. Plant Sci., 85: 15–21.Google Scholar
  46. Emmert E.A.B., Klimowicz A.K., Thomas M.G., Handelsman J. (2004). Genetics of zwittermicin A production byBacillus cereus. Appl. Environ. Microbiol., 70: 104–113.PubMedGoogle Scholar
  47. Estruch J.J., Warren G.W., Mullins M.A., Nye G.J., Craig J.A., Koziel M.G. (1996). Vip 3A, a novelBacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Nat. Acad. Sci. USA, 93: 5389–5394.PubMedGoogle Scholar
  48. Fagerlund A., Ween O., Lund T., Hardy S.P., Granum P.E. (2004). Genetic and functional analysis of the cytK family of genes inBacillus cereus. Microbiology, 150: 2689–2697.PubMedGoogle Scholar
  49. Fang J., Xu X., Wang P., Zhao J.Z., Shelton A.M., Cheng J., Feng M.G., Shen Z. (2007). Characterization of chimericBacillus thuringiensis Vip3 toxins. Appl. Environ. Microbiol., 73: 956–961.PubMedGoogle Scholar
  50. Faramarzi M.A., Stagars M., Pensini E., Krebs W., Brandl H. (2004). Metal solubilization from metal-containing solid materials by cyanogenicChromobacterium violaceum. J. Biotech., 113: 321–326.Google Scholar
  51. Favret M.E., Yousten A.A. (1989). Thuricin: the bacteriocin produced byBacillus thuringiensis. J. Invert. Pathol., 53: 206–216.Google Scholar
  52. Federle M.J., Bassler B.L. (2003). Interspecies communication in bacteria. J. Clin. Invest., 112: 1291–1299.PubMedGoogle Scholar
  53. Fedhila S., Nel P., Lereclus D. (2002). The InhA2 metalloprotease ofBacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J. Bacteriol., 184: 3296–3304.PubMedGoogle Scholar
  54. Fedhila S., Gohar M., Slamti L., Nel P., Lereclus D. (2003). TheBacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J. Bacteriol., 185: 2820–2825.PubMedGoogle Scholar
  55. Felse P.A., Panda T. (1999). Regulation and cloning of microbial chitinase genes. Appl. Microbiol. Biotechnol., 51: 141–151.PubMedGoogle Scholar
  56. Firoved A.M., Deretic V. (2003). Microarray analysis of global gene expression in mucoidPseudomonas aeruginosa. J. Bacteriol., 185: 1071–1081.PubMedGoogle Scholar
  57. Flagan S., Ching W.K., Leadbetter J.R. (2003).Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation byVariovorax paradoxus. Appl. Environ. Microbiol., 69: 909–916.PubMedGoogle Scholar
  58. Follmer C., Real-Guerra R., Wasserman G.E., Olivera-Severo D.R., Carlini C.R. (2004). Jackbean, soybean andBacillus pasteurii ureases biological effects unrelated to ureolytic activity. Eur. J. Biochem., 271: 1357–1363.PubMedGoogle Scholar
  59. Freeman S., Minzm O., Kolesnik I., Barbul O., Zveibil A., Maymon M., Nitzani Y., Kirshner B., Rav-David D., Bilu A., Dag A., Shafir S., Elad Y. (2004).Trichoderma biocontrol ofColletotrichum acutatum andBotrytis cinerea and survival in strawberry. Eur. J. Plant Pathol., 110: 361–370.Google Scholar
  60. Fuqua C., Parsek M.R., Greenberg E.P. (2001). Regulation of gene expression by cell-to-cell communication: acylhomoserine lactone quorum sensing. Annu. Rev. Genet., 35: 439–468.PubMedGoogle Scholar
  61. Gallagher L.A., Manoil C. (2001).Pseudomonas aeruginosa PAO1 killsCaenorhabditis elegans by cyanide poisoning. J. Bacteriol., 183: 6207–6214.PubMedGoogle Scholar
  62. Ghelardi E., Celandroni F., Salvetti S., Barsotti C., Baggiani A., Senesi S. (2002). Identification and characterization of toxigenicBacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiol. Lett., 208: 129–134.PubMedGoogle Scholar
  63. Ghosh S., Penterman J.N., Little R.D., Chavez R., Glick B.R. (2003). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola,Brassica campestris. Plant Physiol. Biochem., 41: 277–281.Google Scholar
  64. Gilmore M.S., Cruz-Rodz A.L., Leimeister-Wachter M., Kreft J., Goebel W. (1989). ABacillus cereus cytolytic determinant, Cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J. Bacteriol., 171: 744–753.PubMedGoogle Scholar
  65. Glare T.R., O’Callaghan M. (2000). Characterisation. In:Bacillus thuringiensis: Biology, Ecology and Safety, J. Wiley and Sons Ltd. West Sussex PO19 1UD, UK, pp. 71–79.Google Scholar
  66. Glass A.D.M. (1989). Plant Nutrition: An Introduction to Current Concepts. Jones and Bartlett Publishers, Boston, MA, USA.Google Scholar
  67. Glick B.R. (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol., 41: 109–117.Google Scholar
  68. Glick B.R., Penrose D.M., Li J. (1998). A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., 190: 63–68.PubMedGoogle Scholar
  69. Glick B.R., Patten C.L., Holguim G., Penrose D.M. (1999). Biochemicaland Genetic Mechanisms Used by Plant Growth Promoting Bacteria, ICP, Covent Garden, London.Google Scholar
  70. Glick B.R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett., 251: 1–7.PubMedGoogle Scholar
  71. Glickmann E., Gardan L., Jacquet S., Hussain S., Elasri M., Petit A., Dessaux Y. (1998). Auxin production is a common feature of most pathovars ofPseudomonas syringae. Molecular Plant-Microbe Interact., 11: 156–162.Google Scholar
  72. Goldstein A.H. (1986). Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am. J. Altern. Agr., 1: 51–57.Google Scholar
  73. Gominet M., Slamti L., Gilois N., Rose M., Lereclus D. (2001). Oligopeptide permease is required for expression of theBacillus thuringiensis plcR regulon and for virulence. Mol. Microbiol., 40: 963–975.PubMedGoogle Scholar
  74. Gooday G.W. (1994). Physiology of microbial degradation of chitin and chitosan. In: Ratledge C., Ed., Biochemistry of Microbial Degradation, Kluwer, Dordrecht, pp. 279–312.Google Scholar
  75. Grant C.A., Bailey L.D., Harapiak J.T., Flore N.A. (2002). Effect of phosphate source, rate and cadmium content and use ofPenicillium bilaii on phosphorus, zinc and cadmium concentration in durum wheat grain. J. Sci. Food. Agri., 82: 301–308.Google Scholar
  76. Grichko V.P., Glick B.R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem., 39: 11–17.Google Scholar
  77. Griffitts J.S., Haslam S.M., Yang T., Garczynski S.F., Mulloy B., Morris H., Cremer P.S., Dell A., Adang M.J., Aroian R.V. (2005). Glycolipids as receptors forBacillus thuringiensis crystal toxin. Science, 307: 922–925.PubMedGoogle Scholar
  78. Handelsman J., Nesmith W.C., Raffel S.J. (1991). Microssay for biological and chemical control of infection of tobacco byPhytophthora parasitica var.nicotianae. Curr. Microbiol., 22: 317–319.Google Scholar
  79. Hansen B.M., Handriksen N.B. (2001). Detection of enterotoxicBacillus cereus andBacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol., 67: 185–189.PubMedGoogle Scholar
  80. Héchard Y., Sahl H.G. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 84: 545–557.PubMedGoogle Scholar
  81. Helgason E., Økstad O.A., Caugant D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolstø A.B. (2000).Bacillus anthracis, Bacillus cereus andBacillus thuringiensis one species on the basis of genetic evidence. Appl. Environ. Microbiol., 66: 2627–2630.PubMedGoogle Scholar
  82. Hernandez E., Ramisse F., Ducoureau J.P., Cruel T., Cavallo J.D. (1998).Bacillus thuringiensis subsp.konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol., 36: 2138–2139.PubMedGoogle Scholar
  83. Hernandez E., Ramisse F., Cruel T., le Vagueresse R., Cavallo J.D. (1999).Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immunocompetent mice after pulmonary infection. FEMS Immunol. Med. Microbiol., 24: 43–47.PubMedGoogle Scholar
  84. Hernandez E., Ramisse F., Gros P., Cavallo J. (2000). Superinfection byBacillus thuringiensis H34 or 3a3b can lead to death in mice infected with the influenza A virus. FEMS Immunol. Med. Microbiol., 29: 177–181.PubMedGoogle Scholar
  85. Hernández C.S., Andrewa R., Ferré Y.B.J. (2005). Isolation and toxicity ofBacillus thuringiensis from potato-growing areas in Bolivia. J. Invert. Pathol., 88: 8–16.Google Scholar
  86. Hill K.K., Ticknor L.O., Okinaka R.T., Asaym M., Blair H., Bliss K.A., Laker M., Pardington P.E., Richardson A.P., Tonks M., Beecher D.J., Kemp J.D., Kolstø A.B., Wong A.C.L., Keim P., Jackson P.J. (2004). Fluorescent amplified fragment length polymorphism analysis ofBacillus anthracis, Bacillus cereus, andBacillus thuringiensis isolates. Appl. Environ. Microbiol., 70: 1068–1080.PubMedGoogle Scholar
  87. Hoffmaster A.R., Ravel J., Rasko D.A., Chapman G.D., Chute M.D., Marston C.K., De B.K., Sacchi C.T., Fitzgerald C., Mayer L.W., Maiden M.C.J., Priest F.G., Barker M., Jiang L., Cer R.Z., Rilstone J., Peterson S.N., Weyant R.S., Galloway D.R., Rea T.D., Popovic T., Fraser C.M. (2004). Identification of anthrax toxin genes in aBacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA, 101: 8449–8454.PubMedGoogle Scholar
  88. Hontzeas N., Zoidakis J., Glick B.R., Abu-Omar M.M. (2004). Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacteriumPseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim. Biophys. Acta, 1703: 11–19.PubMedGoogle Scholar
  89. Huang J.J., Han J.I., Zhang L.H., Leadbetter J.R. (2003). Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad andPseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 69: 5941–5949.PubMedGoogle Scholar
  90. Huang C.J., Chen C.Y. (2004). Gene cloning and biochemical characterization of chitinase CH fromBacillus cereus 28–9. Ann. Microbiol., 54: 289–297.Google Scholar
  91. Huang C.J., Wang T.K., Chung S.C., Chen C.Y. (2005). Identification of an antifungal chitinase from a potential biocontrol agent,Bacillus cereus 28–9. J. Biochem. Mol. Biol., 38: 82–88.PubMedGoogle Scholar
  92. Huang J.J., Petersen A., Whiteley M., Leadbetter J.R. (2006). Identification of QuiP, the product of gene PA1032, as the second Acyl-Homoserine Lactone Acylase ofPseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 72: 1190–1197.PubMedGoogle Scholar
  93. Hultmark D., Engstrom A., Bennich H., Kapur R., Boman H.G. (1982). Insect immunity: isolation and structure of cecropin D and four minor antibacterial components fromCecropia pupae. Eur. J. Biochem., 127: 207–217.PubMedGoogle Scholar
  94. Il Kim P., Chung K.C. (2004). Production of an antifungal protein for control ofColletotrichum lagenarium byBacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett., 234: 177–183.Google Scholar
  95. Inagaki S., Miyasono M., Yamamoto M., Ohba K., Ishiguro T., Takeda R., Hayashi Y. (1992). Induction of antibacterial activity againstBacillus thuringiensis in the common cutworm,Spodoptera litura (Lepidoptera: Noctuidae). Appl. Entomol. Zool., 27: 565–570.Google Scholar
  96. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N., Lapidus A., Chu L., Mazur M., Goltsman E., Larsen N., D’Souza M., Walunas T., Grechkin Y., Pusch G., Haselkorn R., Fonstein M., Ehrlich S.D., Overbeek R., Kyrpides N. (2003). Genome sequence ofBacillus cereus and comparative analysis withBacillus anthracis. Nature, 423: 87–91.PubMedGoogle Scholar
  97. Jackson S.G., Goodbrand R.B., Ahmed R., Kasatiya S. (1995).Bacillus cereus andBacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett. Appl. Microbiol., 21: 103–105.PubMedGoogle Scholar
  98. James C. (2005) Preview: Global status of commercialized biotech/GM crops: 2004. ISAAA Briefs No. 32. ISAAA (International Service for the Acquisition of Agri-biotech Applications): Ithaca, NY.Google Scholar
  99. Jensen G.B., Larsen P., Jacobsen B.L., Madsen B., Smidt L., Andrup L. (2002).Bacillus thuringiensis in fecal samples from greenhouse workers after exposure toB-thuringiensis-based pesticides. Appl. Environ. Microbiol., 68: 4900–4905.PubMedGoogle Scholar
  100. Jia Y.J., Ito H., Matsui H., Honma M. (2000). 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated inPenicillium citrinum intracelular spaces. Biosci. Biotechnol. Biochem., 64: 299–305.PubMedGoogle Scholar
  101. Kim J.Y. (2003). Overproduction and secretion ofBacillus circulans endo-?-1,3-1,4-glucanase gene (bglBC1) inB. subtilis andB. megaterium. Biotech. Lett., 25: 1445–1449.Google Scholar
  102. Klaenhammer T.R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 12: 39–86.PubMedGoogle Scholar
  103. Knight P.J.K., Crickmore N., Ellar D.J. (1994). The receptor ofBacillus thuringiensis CryIA(c)delta-endotoxin in the brush border membrane ofthe lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol., 11: 429–436.PubMedGoogle Scholar
  104. Kobayashi D.Y., Reedy R.M., Bick J.A., Oudemans P.V. (2002). Characterization of a chitinase gene fromStenotrophomonas maltophilia strain 34S1 and its involvementin biological control. Appl. Environ. Microbiol., 68: 1047–1054.PubMedGoogle Scholar
  105. Kobayashi T., Suzuki M., Inoue H., Itai R.N., Takahashi M., Nakanishi H., Mori S., Nishizawa N.K. (2005). Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J. Experim. Bot., 56: 1305–1316.Google Scholar
  106. Kostichka K., Warren G.W., Mullins M., Mullins A.D., Craig J.A., Koziel M.G., Estruch J.J. (1996). Cloning of acryV-type insecticidal protein gene fromBacillus thuringiensis: The cryV-encoded protein is expressed early in stationary phase. J. Bacteriol., 178: 2141–2144.PubMedGoogle Scholar
  107. Kotze A.C., O’Grady J., Gough J.M., Pearson R., Bagnall N.H., Kemp D.H., Akhurst R.J. (2005). Toxicity ofBacillus thuringiensis to parasitic and free-livinglife-stages of nematode parasites of livestock. Int. J. Parasitol., 35: 1013–1022.PubMedGoogle Scholar
  108. Leadbetter J.R., Greenberg E.P. (2000). Metabolism of acylhomoserine lactone quorum-sensing signals byVariovorax paradoxus. J. Bacteriol., 18: 6921–6926.Google Scholar
  109. Lee S.J., Park S.Y., Lee J.J., Yum D.Y., Koo B.T., Lee J.K. (2002). Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies ofBacillus thuringiensis. Appl. Environ. Microbiol., 68: 3919–3924.PubMedGoogle Scholar
  110. Lee M.K., Walters F.S., Hart H., Palekar N., Chen J.S. (2003). The mode of action of theBacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab d-endotoxin. Appl. Environ. Microbiol., 69: 4648–4657.PubMedGoogle Scholar
  111. Leveau J.H.J., Lindow S.E. (2005). Utilization of the plant hormone indole-3-acetic acid for growth byPseudomonas putida strain 1290. Appl. Environ. Microbiol., 71: 2365–2371.PubMedGoogle Scholar
  112. Lin Y.H., Xu J.L., Hu J., Wang L.H., Ong S.L., Leadbetter J.R., Zhang L.H. (2003). Acyl-homoserine lactone acylase fromRalstonia strain XJ12B represents a novel and potent class of quorum quenching enzymes. Mol. Microbiol., 47: 849–860.PubMedGoogle Scholar
  113. Lindback T., Fagerlund A., Rodland M.S., Granum P.E. (2004). Characterization of theBacillus cereus Nhe enterotoxin. Microbiology, 150: 3959–3967.PubMedGoogle Scholar
  114. Liu S.T., Perry K. L., Schardl C.L., Kado C.L. (1982).Agrobacterium Ti plasmid indoleacetic acid gene is required for crown gall oncogenesis. Proc. Natl. Acad. Sci., 79: 2812–2816.PubMedGoogle Scholar
  115. Liu M., Cai Q.X., Liu H.Z., Zhang B.H., Yan J.P., Yuan Z.M. (2002). Chitinolytic activities inBacillus thuringiensis their synergistic effects on larvicidal activity. J. Appl. Microbiol., 93: 374–379.PubMedGoogle Scholar
  116. Liu M., Wang J., Liu J., Yao J.M., Yu Z.L. (2006). Expression ofBacillus subtilis JA18 endo-beta-1,4-glucanase gene inEscherichia coli and characterization of the recombinant enzyme. Ann. Microbiol., 56 (1): 41–45.Google Scholar
  117. Liu D., Thomas P.W., Momb J., Hoang Q.Q., Petsko G.A., Ringe D., Fast W. (2007). Structure and specificity of a quorumquenching lactonase (AiiB) fromAgrobacterium tumefaciens. Biochemistry, 46: 11789–11799.PubMedGoogle Scholar
  118. Lorck H. (1948). Production of hydrocyanic acid by bacteria. Physiol. Plant., 1: 142–146.Google Scholar
  119. Lund T., Granum P.E. (1997). Comparison of biological effectof the two different enterotoxin complexes isolated from three-different strains ofBacillus cereus. Microbiol., 143: 3329–3336.Google Scholar
  120. Lund T., De Buyser M.L., Granum P.E. (2000). A new cytotoxin fromBacillus cereus that may cause necrotic enteritis. Mol. Microbiol., 38: 254–261.PubMedGoogle Scholar
  121. Luthy P., Wolfersberger M.G. (2000). Pathogenesis ofBacillus thuringiensis toxins. In: Charies J.F., Delécluse A., Nielsen-LeRoux C., Eds, Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, Dordrecht, pp. 167–180.Google Scholar
  122. Manceva S.D., Pusztai-Carey M., Russo P.S., Butko P. (2005). A detergent-like mechanism of action of the cytolytic toxin Cyt1A fromBacillus thuringiensis var.israelensis. Biochemistry, 44: 589–597.PubMedGoogle Scholar
  123. Masalha J., Kosegarten H., Elmaci Ö., Mengel K. (2000). The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Fertil. Soils, 30: 433–439.Google Scholar
  124. Mayak S., Tirosh T., Glick B.R. (2004a). Plant growth-promoting bacteria confer resistancein tomato plants to salt stress. Plant Physiol. Biochem., 42: 565–572.PubMedGoogle Scholar
  125. Mayak S., Tirosh T., Glick B.R. (2004b). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci., 166: 525–530.Google Scholar
  126. Miller M.B., Bassler B.L. (2001). Quorum sensing in bacteria. Annu. Rev. Microbiol., 55: 165–199.PubMedGoogle Scholar
  127. Minami R., Uchiyama K., Murakami T., Kawai J., Mikami K., Yamada T., Yokoi D., Ito H., Matsui H., Honma M. (1998). Properties, sequence, and synthesis inEscherichia coli of 1-aminocyclopropane-1-carboxylate deaminase fromHansenula saturnus. J. Biochem. (Tokyo), 123: 1112–1118.Google Scholar
  128. Miyanishi N., Matsubara Y., Hamada N., Kobayashi T., Imada C., Watanabe E. (2003). The action modes of an extracellular β-1,3-glucanase isolated fromBacillus clausii NM-1 on β-1,3-glucooligosaccharides. J. Biosc. Bioeng., 96: 32–37.Google Scholar
  129. Mora D., Musacchio F., Fortina M.G., Senini L., Manachini P.L. (2003). Autolytic activity and pediocin-induced lysis inPediococcus acidilactici andPediococcus pentosaceus strains. J. Appl. Microbiol., 94: 561–570.PubMedGoogle Scholar
  130. Mukherjee P.K., Rai R.K. (2000). Effect of vesicular arbuscular mycorrhizae and phosphate-solubilizing bacteria on growth, yield and phosphorus uptake by wheat (Triticum aestivum) and chickpea (Cicer arietinum). Ind. J. Agro., 45: 602–607.Google Scholar
  131. Naclerio G., Ricca E., Sacco M., De Felice M. (1993). Antimicrobial activity of a newly identified bacteriocin ofBacillus cereus. Appl. Environ. Microbiol., 59: 4313–4316.PubMedGoogle Scholar
  132. Nair J.R., Narasimman G., Sekar V. (2004). Cloning and partial characterization of zwittermicin A resistance gene cluster fromBacillus thuringiensis subsp.kurstaki strain HD1. J. Appl. Microbiol., 97: 495–503.PubMedGoogle Scholar
  133. Nautiyal C.S., Bhadauria S., Kumar P., Lai H., Mondal R., Verma D. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbi. Lett., 182: 291–296.Google Scholar
  134. Osburn R.M., Milner J.L., Oplinger E.S., Smith R.S., Handelsman J. (1995). Effect ofBacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis., 79: 551–556.Google Scholar
  135. Oscáriz J.C., Lasa I., Pisabarro A.G. (1999). Detection and characterization of cerein 7, a new bacteriocin produced byBacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett., 178: 337–341.PubMedCrossRefGoogle Scholar
  136. Oscáriz J.C., Pisabarro A.G. (2000). Characterization and mechanism of action of cerein 7, a bacteriocin produced byBacillus cereus BC7. J. Appl. Microbiol., 89: 361–369.PubMedGoogle Scholar
  137. Paik H.D., Bae S.S., Park S.H., Pan J.G. (1997). Identification and partial characterization of tochicin, a bacteriocin produced byBacillus thuringiensis subsp.tochigiensis. J. Ind. Microbiol. Biotech., 19: 294–298.Google Scholar
  138. Paik H.D., Lee N.K., Lee K.H., Hwang Y.I., Pan J.G. (2000). Identification and partial characterization of cerein BS229, a bacteriocin produced byBacillus cereus BS229. J. Miicrobiol. Biotech., 10: 195–200.Google Scholar
  139. Pal S.S. (1998). Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil, 198: 169–177.Google Scholar
  140. Park S.Y., Kang H.O., Jang H.S., Lee J.K., Koo B.T., Yum D.Y. (2005a). Identification of extracellular N-acylhomoserine lactone acylase from aStreptomyces sp. and its application to quorum quenching. Appl. Environ. Microbiol., 71: 2632–2641.PubMedGoogle Scholar
  141. Park R.Y., Choi M.H., Sun H.Y., Shin S.H. (2005b). Production of catechol-siderophore and utilization of transferrin-bound iron inBacillus cereus. Biol. Pharm. Bull., 28: 1132–1135.PubMedGoogle Scholar
  142. Patten C.L., Glick B.R. (2002). Role ofPseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68: 3795–3801.PubMedGoogle Scholar
  143. Pleban S., Chernin L., Chet I. (1997). Chitinolytic activity of an endophytic strain ofBacillus cereus. Lett. Appl. Microbiol., 25: 284–288.PubMedGoogle Scholar
  144. Porcar M., Juarez-Perez V. (2003). PCR-based identification ofBacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev., 26: 419–432.PubMedGoogle Scholar
  145. Prinsen E., Costacurta A., Michiels K., Vanderleyden J., Van Onckelen H. (1993).Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant-Microbe Interact., 6: 609–615.Google Scholar
  146. Raddadi N., Cherif A., Mora D., Ouzari H., Boudabous A., Molinari F., Daffonchio D. (2004). The autolytic phenotype ofBacillus thuringiensis. J. Appl. Microbiol., 97: 158–168.PubMedGoogle Scholar
  147. Raddadi N., Cherif A., Mora D., Brusetti L., Borin S., Boudabous A., Daffonchio D. (2005). The autolytic phenotype of theBacillus cereus group. J. Appl. Microbiol., 99: 1070–1081.PubMedGoogle Scholar
  148. Raffel S.J., Stabb E.V., Milner J.L., Handelsman J. (1996). Genotypic and phenotypic analysis of zwittermicin A-producing strains ofBacillus cereus. Microbiology, 142: 3425–3436.PubMedGoogle Scholar
  149. Ramette A., Frapolli M., Defago G., Moenne-Loccoz Y. (2003). Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol. Plant-Microbe Interact., 16: 525–535.PubMedGoogle Scholar
  150. Ramisse V., Patra G., Garrigue H., Guesdon J.L., Mock M. (1996). Identification and characterization ofBacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol. Lett., 145: 9–16.PubMedGoogle Scholar
  151. Rasko D.A., Ravel J., Økstad O.A., Helgason E., Cer R.Z., Jiang L., Shores K.A., Fouts D.E., Tourasse N.J., Angiuoli S.V., Kolonay J., Nelson W.C., Kolstø A.B., Fraser C.M., Read T.D. (2004). The genome sequence ofBacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related toBacillus anthracis pXO1. Nucl. Ac. Res., 32: 977–988.Google Scholar
  152. Rasko D.A., Altherr M.R., Han C.S., Ravel J. (2005). Genomics of theBacillus cereus group of organisms. FEMS Microbiol. Rev., 29: 303–329.PubMedGoogle Scholar
  153. Read T.D., Salzberg S.L., Pop M., Shumway M., Umayam L., Jiang L., Holtzapple E., Busch J.D., Smith K.L., Schupp J.M., Solomon D., Keim P., Fraser C.M. (2002). Comparative genome sequencing for discovery of novel polymorphisms inBacillus anthracis. Science, 296: 2028–2033.PubMedGoogle Scholar
  154. Read T.D., Peterson S.N., Tourasse N., Les Baillie W., Paulsen I.T., Nelson K.E., Tettelin H., Fouts D.E., Eisen J.A., Gill S.R., Holtzapple E.K., Økstad O.A., Helgason E., Rilstone J., Wu M., Kolonay J.F., Beanan M.J., Dodson R.J., Brinkac L.M., Gwinn M., DeBoy R.T., Madpu R., Daugherty S.C., Durkin A.S., Haft D.H., Nelson W.C., Peterson J.D., Pop M., Khouri H.M., Radune D., Benton J.L., Mahamoud Y., Jiang L., Hance I.R., Weidman J.F., Berry K.J., Plaut R.D., Wolf A.M., Watkins K.L., Nierman W.C., Hazen A., Cline R., Redmond C., Thwaite J.E., White O., Salzberg S.L., Thomason B., Friedlander A.M., Koehler T.M., Hanna P.C., Kolstø A.-B., Fraser C.M. (2003). The genome sequence ofBacillus anthracis Ames and comparison to closely related bacteria. Nature, 423: 81–86.PubMedGoogle Scholar
  155. Regev A., Keller M., Strizhov N., Sneh B., Prudovsky E., Chet I., Ginzberg I., KonczKalman Z., Koncz C., Schell J., Zilberstein A. (1996). Synergistic activity of aBacillus thuringiensis delta-endotoxin and a bacterial endochitinase againstSpodoptera littoralis larvae. Appl. Environ. Microbiol., 62: 3581–3586.PubMedGoogle Scholar
  156. Ren D., Zuo R., Wood T.K. (2005). Quorum-sensing antagonist (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone influences siderophore biosynthesis inPseudomonas putida andPseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 66: 689–695.PubMedGoogle Scholar
  157. Reyes-Ramirez A., Escudero-Abarca B.I., Aguilar-Uscanga G., Hayward-Jones P.M., Barboza-Corona J.E. (2004). Antifungal activity ofBacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci., 69: M131-M134.CrossRefGoogle Scholar
  158. Richardson A.E. (2001). Prospects for using soil microorganisms toimprove the acquisition of phosphorus by plants. Aust. J. Plant Physiol., 28: 897–906.Google Scholar
  159. Riley M.A., Wertz J.E. (2002). Bacteriocins: evolution, ecology and application. Ann. Rev. Microbiol., 56: 117–137.Google Scholar
  160. Risøen P.A., Rønning P., Hegna I.K., A Kolstø B. (2004). Characterization of a broad range antimicrobial substance fromBacillus cereus. J. Appl. Microbiol., 96: 648–655.PubMedGoogle Scholar
  161. Rivera A.M.G., Granum P.E., Priest F.G. (2000). Common occurrence of enterotoxin genes and enterotoxicity inBacillus thuringiensis. FEMS Microbiol. Lett., 190: 151–155.Google Scholar
  162. Rodriguez H., Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17: 319–339.PubMedGoogle Scholar
  163. Rosenquist H., Smidt L., Andersen S.R., Jensen G.B., Wilcks A. (2005). Occurrence and significance ofBacillus cereus andBacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett., 250: 129–136.PubMedGoogle Scholar
  164. Sampson M.N., Gooday G.W. (1998). Involvement of chitinases ofBacillus thuringiensis during pathogenesis in insects. Microbiology, 144: 2189–2194.PubMedGoogle Scholar
  165. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H. (1998).Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev., 62: 775–806.PubMedGoogle Scholar
  166. Schoeni J.L., Wong A.C.L. (2005).Bacillus cereus food poisoning and its toxins. J. Food Protect., 68: 636–648.Google Scholar
  167. Schutz A., Golbik R., Tittmann K., Svergun D.I., Koch M.H.J., Hubner G., Konig S. (2003). Studies on structure-function relationships of indolepyruvate decarboxylase fromEnterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur. J. Biochem., 270: 2322–2331.PubMedGoogle Scholar
  168. Schwart J.L., Laprade R. (2000). Membrane permeabilization byBacillus thuringiensis toxins: protein formation and pore insertion. In: Charles J.F., Delécluse A., Nielsen-LeRoux C., Eds, Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, Dordrecht, pp. 199–218.Google Scholar
  169. Sergeeva E., Liaimer A., Bergman B. (2002). Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta, 215: 229–238.PubMedGoogle Scholar
  170. Shang H., Chen J., Handelsman J., Goodman R.M. (1999). Behavior ofPythium torulosum zoospores during their interaction with tobacco roots andBacillus cereus. Curr. Microbiol., 38: 199–204.PubMedGoogle Scholar
  171. Sharifi-Tehrani A., M. Zala, A. Natsch, Y. Moenne-Loccoz, Défago G. (1998). Biocontrol of soilborne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J. Plant Pathol., 104: 631–643.Google Scholar
  172. Sharma A., Johri B.N., Sharma A.K., Glick B.R. (2003). Plant growth-promoting bacteriumPseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem., 35: 887–894.Google Scholar
  173. Shi Y., Xu W., Yuan M., Tang M., Chen J., Pang Y. (2004). Expression of vip1/vip2 genes inEscherichia coli andBacillus thuringiensis and the analysis of their signal peptides. J. Appl. Microbiol., 97: 757–765.PubMedGoogle Scholar
  174. Silo-Suh L.A., Lethbridge B.J., Raffel S.J., He H., Clardy J., Handelsman J. (1994). Biological activities of two fungistatic antibiotics produced byBacillus cereus UW85. Appl. Environ. Microbiol., 60: 2023–2030.PubMedGoogle Scholar
  175. Silo-Suh L.A., Stabb E.V., Raffel S.J., Handelsman J. (1998). Target range of zwittermicin A, an aminopolyol antibiotic fromBacillus cereus. Curr. Microbiol., 37: 6–11.PubMedGoogle Scholar
  176. Singh S., Kapoor K.K. (1999). Inoculation with phosphate solubilizing microorganisms and a vesicular arbuscular mycorrhizalfungus improves dry matter yield and nutrient uptake bywheat grown in a sandy soil. Biol. Fertil. Soils, 28: 139–144.Google Scholar
  177. Smith K.P., Havey M.J., Handelsman J. (1993). Suppression of cottonyleak of cucumber withBacillus cereus strain UW85. Plant Dis., 77: 139–142.Google Scholar
  178. Smith T.J., Blackman S.A., Foster S.J. (2000). Autolysins ofBacillus subtilis: multiple enzymes with multiple functions. Microbiology, 146: 249–262.PubMedGoogle Scholar
  179. Stabb E.V., Handelsman J. (1998). Genetic analysis of zwittermicin A resistance inEscherichia coli: effects on membrane potential and RNA polymerase. Mol. Microbiol., 27: 311–322.PubMedGoogle Scholar
  180. Staniscuaski F., Ferreira-Da Silva C.T., Mulinari F., Pires-Alves M., Carlini C.R. (2005). Insecticidal effects of canatoxin on the cotton stainer bugDysdercus peruvianus (Hemiptera: Pyrrhocoridae). Toxicon, 45: 753–760.PubMedGoogle Scholar
  181. Tehrani A.S., Disfani F.A., Hedjaroud G.A., Mohammadi M. (2001). Antagonistic effects of several bacteria onVerticillium dahliae the causal agent of cotton wilt. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet., 66: 95–101.PubMedGoogle Scholar
  182. Tellam R.L., Wijffels G., Willadsen P. (1999). Peritrophic matrix proteins. Insect Biochem. Molec. Biol., 29: 87–101.Google Scholar
  183. Terra W.R. (2001). The origin and function of the insect peritrophic membrane and peritrophic gel. Arch. Insect Biochem. Physiol., 47: 47–61.PubMedGoogle Scholar
  184. Theis T., Stahl U. (2004). Antifungal proteins: targets, mechanisms and prospective applications. Cell. Mol. Life Sci., 61: 437–455.PubMedGoogle Scholar
  185. Thomas P.W., Stone E.M., Costello A.L., Tierney D.L., Fast W. (2005). The quorum-quenching lactonase fromBacillus thuringiensis is a metalloprotein. Biochemistry, 44: 7559–7569.PubMedGoogle Scholar
  186. Torreblanca M., Meseguer I., Ventosa A. (1994). Production of halocin is a practically universal feature of archael halophilic rods. Lett. Appl. Microbiol., 19: 201–205.Google Scholar
  187. Turnbull P.C., Hutson R.A., Ward M.J., Jones M.N., Quinn C.P., Finnie N.J., Duggleby C.J., Kramer J.M., Melling J. (1992).Bacillus anthracis but not always anthrax. J. Appl. Bacteriol., 72: 21–28.PubMedGoogle Scholar
  188. Uroz S., Oger P., Chhabra S. R., Cámara M., Williams P., Dessaux Y. (2007).N-acyl homoserine lactones are degraded via an amidolytic activity inComamonas sp. strain D1. Arch. Microbiol., 187: 249–256.PubMedGoogle Scholar
  189. Uroz S., Chhabra S.R., Càmara M., Williams P., Oger P.M., Dessaux Y. (2005). N-acylhomoserine lactone quorum-sensing molecules are modiWed and degraded byRhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology, 151: 3313–3322.PubMedGoogle Scholar
  190. Vadlamudi R.K., Weber E., Ji I., Ji T.H., Bulla L., Jr A. (1995). Cloning and expression of a receptorfor an insecticidal toxin ofBacillus thuringiensis. J. Biol. Chem., 270: 5490–5494.PubMedGoogle Scholar
  191. van Netten P., van De Moosdijk A., van Hoensel P., Mossel D.A., Perales I. (1990). Psychrotrophic strains ofBacillus cereus producing enterotoxin. J. Appl. Bacteriol., 69: 73–79.PubMedGoogle Scholar
  192. Vessey J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255: 571–586.Google Scholar
  193. von Wiren N., Khodr H., Hider R.C. (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron (III). Plant Physiol., 124: 1149–1157.Google Scholar
  194. Wakelin S.A., Warren R.A., Ryder M.H. (2004). Effect of soil properties on growth promotion of wheat byPenicillium radicum. Aust. J. Soil Res., 42: 897–904.Google Scholar
  195. Wang C., Knill E., Glick B.R., Defago G. (2000). Effect of transferring 1-aminocyclopropoane-1-carboxylic acid (ACC) deaminase genes intoPseudomonas fluorescens strain CH40 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol., 46: 898–907.PubMedGoogle Scholar
  196. Warren G.W. (1997). Vegetative insecticidal proteins: Novel proteinsfor control of corn pests. In: Carozzi N., Koziel M., Eds, Advances in Insect Control: The Role of Transgenic Plants, Taylor and Francis Ltd. London, UK, pp. 109–121.Google Scholar
  197. Wei J.Z., Hale K., Carta L., Platzer E., Wong C., Fang S.C., Aroian R.V. (2003).Bacillus thuringiensis crystal proteins that target nematodes. Proc. Nat. Acad. Sci., 100: 2760–2765.PubMedGoogle Scholar
  198. Wenbo M., Sebestianova S.B., Sebestian J., Burd G.I., Guinel F.C., Glick B.R. (2003). Prevalence of 1-aminocyclopropane-1-carboxylate deaminase inRhizobium spp. Antoine van Leeuwenoek, 83: 285–291.Google Scholar
  199. White F.F., Ziegler S.F. (1991). Cloning of the genes for indoleaceticacid synthesis fromPseudomonas syringae pv.syringae. Mol. Plant-Microbe Interact., 4: 207–210.Google Scholar
  200. Whitehead N.A., Barnard A.M., Slater H., Simpson N.J., Salmond G.P. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 25: 365–404.PubMedGoogle Scholar
  201. Wilson M.K., Abergel R.J., Raymond K.N., Arceneaux J.E.L., Byers B.R. (2006). Siderophores ofBacillus anthracis, Bacillus cereus andBacillus thuringiensis. Biochim. Biophys. Res. Comm., 348: 320–325.Google Scholar
  202. Wirth M.C., Delécluse A., Walton W.E. (2001). Cyt1Ab1 and Cyt2Ba2 fromBacillus thuringiensis subsp.medellin andB. thuringiensis subsp.israelensis synergiesBacillus sphaericus againstAedes aegypti and resistantCulex quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol., 67: 3280–3284.PubMedGoogle Scholar
  203. Wiwat C., Thaithanun S., Pantuwatana S., Bhumiratana A. (2000). Toxicity of chitinase-producingBacillus thuringiensis ssp.kurstaki HD-1 (G) towardPlutella xylostella. J. Invert. Pathol., 76: 270–277.Google Scholar
  204. Wu J., Zhao F., Bai J., Deng G., Qin S., Bao Q. (2007). Evidence for positive Darwinian selection of Vip gene inBacillus thuringiensis. J. Gen. Genom., 34: 649–660.Google Scholar
  205. Wu S.C., Cao Z. H., Li Z.G., Cheung K.C., Wong M.H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125: 155–166.Google Scholar
  206. Tang X.J., He G.Q., Chen Q.H., Zhang X.Y., Ali M.A.M. (2004). Medium optimization for the production of thermal stabled-glucanase byBacillus subtilis SJF-1A5 using response surface methodology. Biores. Technol., 93: 175–181.Google Scholar
  207. Yagi K., Chujo T., Nojiri H., Omori T., Nishiyama M., Yamane H. (2001). Evidence for the presence of DNA-binding proteins involved in regulation of the expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis inAzospirillum lipoferum FS. Biosci. Biotechnol. Biochem., 65: 1265–1269.PubMedGoogle Scholar
  208. Yang C.Y., Pang J.C., Kao S.S., Tsen H.Y. (2003). Enterotoxigenicity and cytotoxicity ofBacillus thuringiensis strains and development of a process for Cry1Ac production. J. Agric. Food Chem., 51: 100–105.PubMedGoogle Scholar
  209. Yehuda Z., Shenker M., Romheld V., Marschner H., Hador Y., Chen Y. (1996). The role of ligand exchange in the uptake of iron frommicrobial siderophores by gramineous plant. Plant Physiol., 112: 1273–1280.PubMedGoogle Scholar
  210. Zhang L.H. (2003). Quorum quenching and proactive host defense. Trends Plant Sci., 8: 238–244.PubMedGoogle Scholar
  211. Zhang M.Y., Lovgren A., Low M.G., Landen R. (1993). Characterization of an avirulent pleitropic mutant of the insect pathogenBacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect. Immun., 64: 4947–4954.Google Scholar
  212. Zhao C., Luo Y., Song C., Liu Z., Chen S., Yu Z., Sun M. (2007). Identification of three zwittermicin A biosynthesis-related genes fromBacillus thuringiensis subsp.kurstaki strain YBT-1520. Arch. Microbiol., 187: 313–319.PubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2007

Authors and Affiliations

  • Noura Raddadi
    • 1
  • Ameur Cherif
    • 2
  • Hadda Ouzari
    • 2
  • Massimo Marzorati
    • 1
  • Lorenzo Brusetti
    • 1
  • Abdellatif Boudabous
    • 2
  • Daniele Daffonchio
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Alimentari e MicrobiologicheUniversità degli StudiMilanoItaly
  2. 2.Laboratoire Microorganismes et Biomolecule ActivesFaculté des Sciences de TunisTunisTunisia

Personalised recommendations