Advertisement

Annals of Microbiology

, Volume 59, Issue 3, pp 419–424 | Cite as

Yeasts colonizing the leaves of fruit trees

  • Elena SlÁviková
  • Renata Vadkertiová
  • Dana Vránová
Ecological and Environmental Microbiology Original Articles

Abstract

Yeasts were isolated from leaf surfaces of five species of fruit trees located in southwest Slovakia. One hundred and fifty five yeast strains belonging to 11 genera were isolated from 300 samples of leaves. Seventeen yeast species were identified, but only three occurred regularly:Aureobasidium pullulans, Cryptococcus laurentii, andMetschnikowia pulcherrima. Species such asHanseniaspora uvarum, Pichia anomala, Rhodotorula glutinis, andSaccharomyces cerevisiae, were isolated less frequently. We found only few differences in the yeast community isolated from leaves of different tree species although dominant species occurred regularly on the majority of leaves. Furthermore, yeast species varied throughout years. In spite of the fact that the yeast community occupying the leaves of the fruit trees was studied in the samples harvested in three localities, which are distanced from each other some kilometers, the qualitative representation of the most isolated yeasts was identical. The differences were only in the frequency of the incidence of individual species in the samples.

Key words

yeasts leaves of fruit trees colonization isolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen T.W., Burpee L.L., Buck J.W. (2004).In vitro attachment of phylloplane yeasts toBotrytis cinerea, Rhizoctonia solani, andSclerotinia homoeocarpa. Can. J. Microbiol., 50: 1041–1048.CrossRefPubMedGoogle Scholar
  2. Andrews J.H., Harris R.F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol., 38: 1–36.CrossRefGoogle Scholar
  3. Andrews J.H., Spear R.N., Nordheim E.V. (2002). Population biology ofAureobasidium pullulans on apple leaf surfaces. Can. J. Microbiol., 48: 500–513.CrossRefPubMedGoogle Scholar
  4. Barnett J.A., Payne R.W., Yarrow D. (2000). Yeasts: Characteristics and Identification. Third Edition, Cambridge University Press.Google Scholar
  5. Blakeman J.P. (1973). The chemical environment of leaf surfaces with special reference to spore germination of pathogenic fungi. Pestic. Sci., 4: 575–588.CrossRefGoogle Scholar
  6. Camatti-Sartori V., da Silva-Ribeiro R.T., Valdebenito-Sanhueza R.M., Pagnocca F. C., Echeverrigaray S., Azevedo J.L. (2005). Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. J. Basic Microbiol., 45: 397–402.CrossRefPubMedGoogle Scholar
  7. Comitini F., Ciani M. (2008). Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol., 58: 489–493.CrossRefGoogle Scholar
  8. Do Carmo-Sousa L. (1969). Distribution of yeasts in nature. In: Rose A.H., Harrison J.S., Eds, The Yeasts, Vol. I, Academic Press, London, pp. 79–105.Google Scholar
  9. Esteve-Zarzoso B., Belloch C., Uruburu F., Qerol A. (1999). Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol., 49: 329–337.PubMedGoogle Scholar
  10. Fiss M., Barckhausen O., Gherbawy Y., Kollar A., Hamamoto M., Auling G. (2003). Characterization of epiphytic yeasts of apple as potential biocontrol agents against apple scab (Venturia inaequalis). J. Plant Dis. Protect., 110: 513–523.Google Scholar
  11. Fleet G.H. (1998). Yeasts in natural habitats. Food Technol. Biotechnol., 36: 285–289.Google Scholar
  12. Fokkema N.J., den Houter J.G., Kosterman Y.J.C., Nelis A.L. (1979). Manipulation of yeasts on field-grown wheat leaves and their antagonistic effect onCochliobolus sativus andSeptoria nodorum. Trans. Br. Mycol. Soc., 72: 19–29.CrossRefGoogle Scholar
  13. Fredlund E., Druvefors U., Boysen M.E., Lingstein K.-J., Schnürer J. (2002). Physiological characteristics of the biocontrol yeastPichia anomala J121. FEMS Yeast Res., 2: 395–402.PubMedGoogle Scholar
  14. Gadanho M., Sampaio J.P. (2002). Polyphasic taxonomy of the basidiomycetous yeast genusRhodotorula: Rh. glutinis sensu stricto andRh. dairensis comb. nov. FEMS Yeast Res., 2: 47–58.PubMedGoogle Scholar
  15. Inácio J., Pereira P., De Carvalho M., Fonseca Á., Amaral-Collaco M.T., Spencer-Martins I. (2002). Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb. Ecol., 44: 344–353.CrossRefPubMedGoogle Scholar
  16. Ippolito A., Nigro F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19: 715–723.CrossRefGoogle Scholar
  17. Jager E., Wehner F., Korsten L. (2001). Microbial ecology of the mango phylloplane. Microb. Ecol., 42: 201–207.PubMedGoogle Scholar
  18. Kurtzmann C.P., Fell J.W., Eds (1998). The Yeasts, A Taxonomic Study, 4th edn., Elsevier Science B.V., Amsterdam.Google Scholar
  19. Kvasnikov E.I., Nagornaia S.S., Shchelokova I.F. (1975). Yeast flora of plant rhizosphere and phyllosphere. Mikrobiologiia, 44: 339–346.PubMedGoogle Scholar
  20. Lachance M.A. (1990). Yeast selection in nature. In: Panchal Ch.J., Ed., Yeast Strain Selection, Vol. 8, M. Dekker, New York, pp. 2–41.Google Scholar
  21. Lachance M.A., Starmer W.T., Rosa C.A., Bowles J.M., Barker J.S., Janzen D.H. (2001). Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res, 1: 1–8.PubMedGoogle Scholar
  22. Leaw S.N., Chang H.C., Sun H.F., Barton R., Bouchara J.P., Chang T.Ch. (2006). Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J. Clin. Microbiol., 44: 693–699.CrossRefPubMedGoogle Scholar
  23. Lima G., Curtis F.D., Castoria R., Cicco V.D. (1998). Activity of the yeastsCryptococcus laurentii andRhodotorula glutinis against post-harvest rots on different fruits. Biocontrol Sci. Technol., 8: 257–267.CrossRefGoogle Scholar
  24. Lindow S.E., Brandl M.T. (2003). Microbiology of the phyllosphere. Appl. Environ. Microbiol., 69: 1875–1883.CrossRefPubMedGoogle Scholar
  25. McCormack P., Wildman H.G., Jeffries P. (1994). Production of antibacterial compounds by phylloplane-inhabiting yeasts and yeast like fungi. Appl. Environ. Microbiol., 60: 927–931.PubMedGoogle Scholar
  26. Middelhoven W.J. (1997). Identity and biodegradative abilities of yeasts isolated from plants growing in an arid climate. Antoine van Leeuwenhoek, 72: 81–89.CrossRefGoogle Scholar
  27. Nakase T. (2000). Expanding world of ballistosporous yeasts: distribution in the phyllosphere, systematics and phylogeny. J. Gen. Appl. Microbiol., 46: 189–216.CrossRefPubMedGoogle Scholar
  28. Neinhuis C., Barthlott W. (1998). Leaf surface contamination in beech, oak, and ginkgo in relation to micromorphology and wettability. New Phytol., 138: 91–98.CrossRefGoogle Scholar
  29. Pereira P.T., de Carvalho M.M., Girio F.M., Roseiro J.C., Amaral-Collaço M.T. (2002). Diversity of microfungi in the phylloplane of plants growing in a Mediterranean ecosystem. J. Basic Microbiol., 42: 396–407.CrossRefPubMedGoogle Scholar
  30. Phaff H.J., Starmer W.T. (1987). Yeasts associated with plants, insects and soil. In: Rose A.H., Harrison J.S., Eds, The Yeasts, 2nd edn., Vol. 1, Academic Press London, pp. 123–180.Google Scholar
  31. Pimenta R.S., Morais P.B., Rosa C.A., Corrêa Jr.A. (2009). Utilization of yeasts in biological control programs. In: Satyanarayana T. and Kunze G., Eds, Yeast Biotechnology: Diversity and Applications, Springer, Netherlands, pp. 199–214.CrossRefGoogle Scholar
  32. Ribeiro I.C., Veríssimo I., Moniz L., Cardoso H., Sousa M.J., Soares A.M.V.M., Leão C. (2000). Yeasts as a model for assessing the toxicity of the fungicides Penconazol, Cymoxanil and Dichlofluanid. Chemosphere, 41: 1637–1642.CrossRefPubMedGoogle Scholar
  33. Robinson T. (1974). Metabolism and function of alcaloids in plants. Science, 184: 430–435.CrossRefPubMedGoogle Scholar
  34. Seibold A., Fried A., Kunz S., Moltmann E., Lange E., Jelkmann W. (2004). Yeasts as antagonists against fireblight. Bulletin OEPP/EPPO Bulletin, 34: 389–390.Google Scholar
  35. Sláviková E., Vadkertiová R. (1995). Yeasts and yeast-like organisms isolated from fish-pond waters. Acta Microbiol. Polonica, 44: 181–189.Google Scholar
  36. Sláviková E., Vadkertiová R., Vránová D. (2007). Yeasts colonizing the leaf surfaces. J. Basic Microbiol., 47: 344–350.CrossRefPubMedGoogle Scholar
  37. Spencer J.F.T., Gorin P.A.J., Gardner N.R. (1974). Yeasts occurring in the effluent disposal basins of a pulp mill in Saskatchewan. Can. J. Microbiol., 20: 993–998.PubMedCrossRefGoogle Scholar
  38. Sugita T., Takashima M., Ikeda R., Nakase T., Shinoda T. (2000). Intraspecies diversity ofCryptococcus laurentii as revealed by sequences of internal transcribed spacer regions and 28S rRNA gene and taxonomic position ofC. Laurentii clinical isolates. J. Clin. Microbiol., 38: 1468–1471.PubMedGoogle Scholar
  39. Takashima M., Sugita T., Shinoda T., Nakase, T. (2003). Three new combinations from theCryptococcus laurentii complex:Cryptococcus aureus, Cryptococcus carnescens and Cryptococcus peneaus. Int. J. Syst. Evol. Microbiol., 53: 1187–1194.CrossRefPubMedGoogle Scholar
  40. Yarrow D. (1998). Methods for isolation, maintenance and identification of yeasts. In: Kurtzman C.P., Fell J.W., Eds, The Yeasts, A Taxonomic Study, 4rd edn., Elsevier Science B.V., Amsterdam, pp. 77–100.Google Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  • Elena SlÁviková
    • 1
  • Renata Vadkertiová
    • 1
  • Dana Vránová
    • 2
  1. 1.Culture Collection of YeastsInstitute of Chemistry Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Food Science and Technology, Faculty of ChemistryBUTBrnoCzech Republic

Personalised recommendations