Advertisement

Annals of Microbiology

, Volume 57, Issue 3, pp 401–406 | Cite as

Isolation and characterisation of moderately halophilic bacteriumHalomonas ventosae DL7 synthesizing ectoine as compatible solute

  • Daochen Zhu
  • Lili Niu
  • Chenxiang Wang
  • Shinichi Nagata
Industrial Microbiology Original Articles

Abstract

A moderately halophilic Gram-negative bacterium, strain DL7, was isolated from saltern sediment of Dalian, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this isolate belongs to the genusHalomonas. Based on the taxonomic and DNA sequence in addition to high DNA-DNA homologies, we concluded that this strain was similar with the type strain ofHalomonas ventosae. Ectoine, one of the representative compatible solutes, was mainly detected in the cells as a result of1H- and13C-NMR measurements when grown in the presence of wide concentration ranges of NaCl. The results showed that higher amount of ectoine was synthesized in a shorter incubation time compared with those of other strains reported earlier.

Key words

compatible solute ectoine Halomonas ventosae 16S rRNA sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calderon M.I., Vargas C., Rojo F., Iglesias-Guerra F., Csonka L.N., Ventosa A., Nieto J.J. (2004)., Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacteriumChromohalobacter salexigens. Microbiology, 150: 3051–3063.CrossRefPubMedGoogle Scholar
  2. De Ley J., Cattoir H., Reynaerts A. (1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem., 12: 133–142.CrossRefPubMedGoogle Scholar
  3. Escara J.F., Hutton J.R. (1980). Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers, 19: 1315–1327.CrossRefPubMedGoogle Scholar
  4. Felsenstein J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17: 368–376.CrossRefPubMedGoogle Scholar
  5. Furusho K., Yoshizawa T., Shoji S. (2005). Ectoine alters subcellular localization of inclusions and reduces apoptotic cell death induced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol. Dis., 20: 170–178.CrossRefPubMedGoogle Scholar
  6. Jenkins D. (1992). Towards a comprehensive model of activated sludge bulking and foaming. Water Sci. Technol., 25: 215–230.Google Scholar
  7. Kanapathipillai M., Lentzen G., Sierks M., Park C.B. (2005). Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s β-amyloid. FEBS Lett., 579: 4775–4780.CrossRefPubMedGoogle Scholar
  8. Kumar S., Tamura K., Jakobsen I., Nei M. (2004). MEGA3: Molecular Evolutionary Genetics Analysis software.Google Scholar
  9. Lim J.M., Yoon J.H., Lee J.C., Jeon C.O., Park D.J., Sung C., Kim C.J. (2004).Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int. J. Syst. Evol. Microbiol., 54: 2037–2042.CrossRefPubMedGoogle Scholar
  10. Lippert K., Galinski E.A. (1992). Enzyme stabilization by ectoinetype compatible solutes: protection against heating, freezing and drying. Appl. Microbiol. Biotechnol., 37: 61–65.CrossRefGoogle Scholar
  11. Margesin R., Schinner F. (2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles, 5: 73–83.CrossRefPubMedGoogle Scholar
  12. Marmur J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol., 3: 208–218.CrossRefGoogle Scholar
  13. Marmur J., Doty P. (1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol., 5: 109–118.CrossRefPubMedGoogle Scholar
  14. Martínez-Cánovas M.J., Quesada E., Llamas I., Béjar V. (2004).Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol., 54: 733–737.CrossRefPubMedGoogle Scholar
  15. Mata J.A., Martínez-Cánovas J., Quesada E., Béjar V. (2002). A detailed phenotypic characterisation of the type strains ofHalomonas species. Syst. Appl. Microbiol., 25: 360–375.CrossRefPubMedGoogle Scholar
  16. Nagata S., Adachi K., Sano H. (1996). NMR analyses of compatible solutes in a halotolerantBrevibacterium sp. Microbiology, 142: 3355–3362.CrossRefGoogle Scholar
  17. Nagata S., Adachi K., Sano H. (1998). Intracellular changes in ions and organic solutes in halotolerantBrevibacterium sp. strain JCM 6894 after exposure to hyperosmotic shock. Appl. Environ. Microbiol., 64: 3641–3647.PubMedGoogle Scholar
  18. Owen R.J., Picher D. (1985). Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In: Goodfellow M., Minnikin D.E., Eds, Chemical Methods in Bacteria Systematics, Academic press, New York, pp. 67–93.Google Scholar
  19. Peter D. (1987). Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Micorbiol. Rev., 51: 320–340.Google Scholar
  20. Poolman B., Glaasker E. (1998). Regulation of compatible solute accumulation in bacteria. Mol. Microbiol., 29: 397–407.CrossRefPubMedGoogle Scholar
  21. Saitou N., Nei M. (1987). The neighbor-joining, method: a new method for reconstructing phylogenetic trees. Mol. Bio. Evol., 4: 406–425.Google Scholar
  22. Springer N., Ludwig W., Amann R., Schmidt H.J., Gortz H., Schleifer K. (1993). Occurrence of fragmented 16s rRNA in an obligate bacterial endosymbiont ofParamedium caudatum. Proc. Natl. Acad. Sci., 90: 9892–9895.CrossRefPubMedGoogle Scholar
  23. Stackebrandt E., Goebel B.M. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol., 44: 846–849.CrossRefGoogle Scholar
  24. Thompson J.D., Higgins D.G., Gibson T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22: 4673–4680.CrossRefPubMedGoogle Scholar
  25. Wang C., Zhu D., Nagata S. (2006). Supplementation effects of hydroxyectoine on proline uptake of down-shockedBrevibacterium sp. JCM 6894. J. Biosci. Bioeng., 101: 178–184.CrossRefPubMedGoogle Scholar
  26. Woese C.R., Gutell R, Noller H.F. (1983). Detailed analysis of the higher order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev., 47: 621–669.PubMedGoogle Scholar
  27. Yoon J.H., Lee K.C., Kho Y.H., Kang K.H., Kim C.J., Park Y.H. (2002).Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol., 52:123–130.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2007

Authors and Affiliations

  • Daochen Zhu
    • 1
  • Lili Niu
    • 2
  • Chenxiang Wang
    • 1
  • Shinichi Nagata
    • 1
  1. 1.Environmental Biochemistry Division, Research Center for Inland Seas, Organization of Advanced Science and TechnologyKobe UniversityKobeJapan
  2. 2.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingPR China

Personalised recommendations