Annals of Microbiology

, Volume 57, Issue 1, pp 39–47 | Cite as

Characterisation ofPseudomonas spp. isolated from foods

Food Microbiology Original Articles

Abstract

PutativePseudomonas spp. (102 isolates) from different foods were first characterised by API 20NE and then tested for some enzymatic activities (lipase and lecithinase production, starch hydrolysis and proteolytic activity). However subsequent molecular tests did not always confirm the results obtained, thus highlighting the limits of API 20NE. Instead RFLP ITS1 and the sequencing of 16S rRNA gene grouped the isolates into 6 clusters:Pseudomonas fluorescens (cluster I),Pseudomonas fragi (duster II and V)Pseudomonas migulae (cluster III),Pseudomonas aeruginosa (cluster IV) andPseudomonas chicorii (cluster VI). The pectinolytic activity was typical of species isolated from vegetable products, especiallyPseudomonas fluorescens. InsteadPseudomonas fragi, predominantly isolated from meat was characterised by proteolytic and lipolytic activities.

Key words

Pseudomonas fluorescens enzymatic activity ITS1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm E.W., Oether D.B., Larsen N., Sthal D.A., Raskin L. (1996). The oligonucleotide probe database. Appl. Environ. Microbiol., 62: 3557–3559.PubMedGoogle Scholar
  2. Arnaut-Rollier I., Vauterin L., De Vos P., Massart D.L., Devriese L.A., De Zutter L., Van Hoof J. (1999). A numerical taxonomic study of thePseudomonas flora isolated from poultry meat. J. Appl. Microbiol., 87: 15–28.CrossRefPubMedGoogle Scholar
  3. Dogan B., Boor K.J. (2003). Genetic diversity and spoilage potentials amongPseudomonas from fluid milk products and dairy processing plants. Appl. Environ. Microbiol., 69: 130–138.CrossRefPubMedGoogle Scholar
  4. Franzetti L., Martinoli S., Piergiovanni L., Galli A. (2001). Influence of active packaging on the shelf-life of Minimally Processed Fish products in a modified atmosphere. Packag. Technol. Sci., 14: 267–274.CrossRefGoogle Scholar
  5. Garcia-Lopez I., Otero A., Garcia-Lopez M-L., Santos J.A. (2004). Molecular and phenotypic characterization of nonmotile Gram-negative bacteria associated with spoilage of freshwater fish. J. Applied Microbiol., 96: 878–886.CrossRefGoogle Scholar
  6. Gram L., Huss H.H. (1996). Microbiological spoilage of fish and fish products. Int. Food Microbiol., 33: 121–137.CrossRefGoogle Scholar
  7. Guasp C., Moore E.R.B., Lalucat J., Bennasar A. (2000). Utility of internally transcribed 16S–23S rDNA spacer regions for the definition ofPseudomonas stutzerii genomovars and otherPseudomonas species. Int. J. Syst. Evol. Microbiol., 50: 1629–1639.PubMedGoogle Scholar
  8. Hugh R., Leifson E (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J. Bacteriol., 66: 24–26.PubMedGoogle Scholar
  9. Johnsen K., Andersen S., Jacobsen C.S. (1996). Phenotypic and genotypic characterization of phenanthrene-degrading fluorescentPseudomonas biovars. Appl. Environ. Microbiol., 62 (10): 3818–3825PubMedGoogle Scholar
  10. Johnsen K., Enger O., Jacobens C.S., Thirupo L., Torsvik V. (1999). Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenuousPseudomonas spp. in soil hot spots. Appl. Environ. Microbiol., 65(4): 1786–1789.PubMedGoogle Scholar
  11. Johnson J.L., Palleroni N.J. (1989). Deoxyribonucleic acid similarities amongPseudomonas species. Int. J. Syst. Bacteriol., 39: 230–235.CrossRefGoogle Scholar
  12. King E.O., Ward M.K., Rancy D.E. (1954). Two simple media for the demonstration of pyocianin and fluorescin. J. Lab. Med., 44: 301–307.Google Scholar
  13. Kozo O. (1995). Comparative ribosomal protein sequence analyses of a phylogenetically defined genus,Pseudomonas, and its relatives. Int. J. Syst. Bacteriol., 45 (2): 268–273.Google Scholar
  14. Lane D.J., Pace B., Olsen G.J., Stahl D.A., Sogin M.L., Pace N.R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Nat. Acad. Sci. USA, 82: 6955–6959.CrossRefPubMedGoogle Scholar
  15. Lelliot R.A., Billing E., Hayaward A.C. (1966). A determinative medium for the fluorescent plant pathogenicPseudomonas. J. Appl. Bacteriol., 29: 470–489.Google Scholar
  16. Miller III A., Scanlan R.A., Lee J.S., Libbey L.M. (1993) Identification of volatile compounds produced in sterile fish muscle (Sebastes melanops) byPseudomonas fragi. Appl. Microbiol., 25: 952–955Google Scholar
  17. Molin G., Ternstrom A. (1986). Phenotypically based taxonomy of psychrotrophicPseudomonas isolated from spoiled meat, water and soil. Int. J. Syst. Bacteriol., 36: 257–274.CrossRefGoogle Scholar
  18. Moore E.R.B., Mau M., Arascheidt A., Bottger E.C., Hutson R.A., Collins M.D., Van de Peer Y., De Wachter R., Timmis K.N. (1996). The determination and comparison of the rRNA gene sequences of species of the genusPseudomonas (sensu stricto) and estimation of natural intrageneric relationships. Syst. Appl. Microbiol., 19: 478–492.Google Scholar
  19. Ngyen-The C., Carlin F. (1994). The microbiology of minimally processed fresh fruit and vegetable. Critical Reviews Food Sci. Nutr., 34 (4): 371–401.CrossRefGoogle Scholar
  20. Palleroni N.J. (1984). Genus I.Pseudomonas Migula 1894. In: Krieg N.R., Holt J.G., Eds, Bergey’s Manual of Systematic Bacteriology, Vol. 2, Williams & Wilkins, Baltimore MD, pp. 141–199.Google Scholar
  21. Palleroni N.J., Doudoroff M. (1972). Some properties and taxonomic subdivision of the genusPseudomonas. Ann. Rev. Phytopath., 10: 73–100.CrossRefGoogle Scholar
  22. Palleroni N.J., Kunisawa R., Contopoulou R., Doudoroff M. (1973). Nucleic acid homologies in the genusPseudomonas. Int. J. Syst. Bacteriol., 23: 333–339.Google Scholar
  23. Palleroni N.J. (1991a). Human and animal pathogenicPseudomonas. In: Balows A, Ed., The Prokaryotes. Springer Verlag, New York, pp. 3086–3103.Google Scholar
  24. Palleroni N.J. (1991b). Introduction to the family Pseudomonadaceae. In: Balows A, Ed., The Prokaryotes, Springer Verlag, New York, pp. 3072–3085.Google Scholar
  25. Palleroni N.J. (1993).Pseudomonas classification. Ant. Leew., 64: 231–251.CrossRefGoogle Scholar
  26. Ridgway H.F., Safarik J. (1990). Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl. Environ. Microbiol., 56: 3565–3575.PubMedGoogle Scholar
  27. Riva M., Franzetti L., Galli A. (2001). Microbiological quality of shelf-life modelling of ready to eat cicorino. J. Food Prot., 64 (2): 228–234.PubMedGoogle Scholar
  28. Rohlf F.J. (1987). NTSYS-PC: Numerical taxonomy and multivariate analysis system for IBM PC Microcomputer (and compatibles), Version 1.30. Applied Biostatistics, New York.Google Scholar
  29. Sand S., Hankin L., Zucker M. (1972). A selective medium for pectinolyticPseudomonas. Phytopatology, 62: 998–1000.CrossRefGoogle Scholar
  30. Scarpellini M., Franzetti L., Galli A. (2004). Development of PCR assay to identifyPseudomonas fluorescens and its biotype. FEMS Microbiol. Lett., 236 (2): 257–260.CrossRefPubMedGoogle Scholar
  31. Sierra G. (1957). A simple method for the detection of lypolitic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Ant. van Leeuw., 23: 115–122.Google Scholar
  32. Sneath P.H.A., Sokal R.R. (1973) Numerical Taxonomy. The Principles and Practice of Numerical Classification. W.H. Freeman, San Francisco, Californy.Google Scholar
  33. Stanier R.Y., Palleroni N.J., Doudoroff M. (1966). The aerobic Pseudomonads: a taxonomy study. J. Gen. Microbiol., 43: 159–271.PubMedGoogle Scholar
  34. Tryfinopoulou P., Tsakalidon E., Nychas G.-J.E. (2002). Characterization ofPseudomonas sp. associated with spoilage of Gilt-head sea bream stored under various conditions. Appl. Environ. Microbiol., 68 (1): 65–72.CrossRefPubMedGoogle Scholar
  35. Wiedmann, M., Weilmeier D., Dineen S.S., Ralyea R.M., Boor K.J. (2000). Molecular and Phenotypic characterization ofPseudomonas spp. isolated from milk. Appl. Environ. Microbiol., 66 (5): 2085–2095.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2007

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Agraria Alimentare EcologicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations