Annals of Microbiology

, 56:109 | Cite as

Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons

  • Abd El-Latif Hesham
  • Zhenyu Wang
  • Yu Zhang
  • Jing Zhang
  • Wenzhou Lv
  • Min YangEmail author
Ecological and Environmental Microbiology Original Articles


A yeast strain AEH was isolated from oil contaminated soil and identified by analysis of 18S and 26S ribosomal DNA sequences asPichia anomala. Strain AEH was capable of degrading naphthalene, phenanthrene and chrysene, singly, and benzo(a)pyrene in combination. The yeast degraded 5.36 mg naphthalene l−1 within 2 days, and 5.04 mg phenanthrene l−1 and 1.54 mg chrysene 1−1 within 10 days. When a mixture of the four polycyclic aromatic hydrocarbons (PAHs) was treated at a concentration between 2.98 mg l−1 and 6.89 mg l−1, degradation rates were delayed for naphthalene and phenanthrene (3.79 mg l−1 and, 4.20 mg l−1 within 10 days, respectively), but enhanced for chrysene and benzo(a)pyrene (3.37 mg l−1 and, 1.91 mg l−1 within 10 days, respectively). In a binary system, all of the other 3 PAHs could be utilized as the carbon source for the cometabolic degradation of benzo(a)pyrene with naphthale ne as the best one.

Key words

biodegradation chrysene benzo(a)pyrene isolation yeast ribosomal DNA 


  1. Aitken M.D., Stringfellow T.W., Nagel D.R., Kazunga C., Chen S.H. (1998). Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can. J. Microbiol., 44: 743–752.CrossRefPubMedGoogle Scholar
  2. Andres S., Andrezj M., Christian J., Aloys H. (1999). Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes byPleurotus ostreatus andBjerkandera adusta. Int. Biodeterior. Biodegrad., 43: 93–100.CrossRefGoogle Scholar
  3. Bossert I.D., Bartha R. (1986). Structure biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bull. Environ. Contam. Toxicol., 37: 490–495.CrossRefPubMedGoogle Scholar
  4. Cerniglia C.E., Crow S.A. (1981). Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol., 129: 9–13.CrossRefGoogle Scholar
  5. Goldman R., Enewold L., Pellizzari E., Beach B.J., Bowman D.E., Krishnan S.S., Shields G.P. (2001). Smoking increase carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res., 61: 6367–6371.PubMedGoogle Scholar
  6. Harju S., Fedosyuk H., Peterson K.R. (2004). Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnol., 4: 8.CrossRefPubMedGoogle Scholar
  7. Hofmann K.H. (1986). Oxidation of naphthalene bySaccharomyces cerevisiae andCandida utilis. J. Basic Microbiol., 26: 109–111.CrossRefPubMedGoogle Scholar
  8. Juhasz A.L., Naidu R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int. Biodeterior. Biodegrad., 45: 57–88.CrossRefGoogle Scholar
  9. Kurtzman C.P., Robnett C.J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antoine van Leeuweenhoek, 73: 331–371.CrossRefGoogle Scholar
  10. Kurtzman C.P., Robnett C.J. (2003). Phylogenetic relationships among yeasts of theSaccharomyces complex determined from multigene sequence analyses. FEMS Yeast Res., 3: 417–432.CrossRefPubMedGoogle Scholar
  11. Leblond J.D., Schultz T.W., Sayler G.S. (2001). Observations on the preferential biodegradation of selected components of polyaromatic hydrocarbon mixtures. Chemosphere, 42: 333–343.CrossRefPubMedGoogle Scholar
  12. Lotfabad S.K., Gray M.R. (2002). Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol., 60: 361–366.CrossRefPubMedGoogle Scholar
  13. Mastrangelo G., Fadda E., Marzia V. (1996). Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect., 104: 1166–1170.CrossRefPubMedGoogle Scholar
  14. McGillivray A.R., Sharis M.P. (1993). Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolation from coastal sediments. Appl. Environ. Microbiol., 59: 1613–1618.Google Scholar
  15. McNally D.L., Mihelcic J.R., Lueking D.R. (1999). Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere, 38: 1313–1321.CrossRefGoogle Scholar
  16. Ooi B.G., Mulisa A., Kim H.Y., Chong N.S. (2003). Methods development for the detection of trace metabolites from the biodegradation of polycyclic aromatic hydrocarbons by yeasts. J. Tennessee Acad. Sci., 78: 65–75.Google Scholar
  17. Pan F., Yang Q., Zhang Y., Zhang S., Yang M. (2004). Biodegradation of polycyclic aromatic hydrocarbons byPichia anomala. Biotechnol. Lett., 26: 803–806.CrossRefPubMedGoogle Scholar
  18. Ren H., Zanma S., Urano N., Endo H., Mineki S., Hayashi T. (2004). Pyrene decomposing yeasts collected from sea water of Tokyo Bay. Nippon Suisan Gakkaishi, 70: 687–692.CrossRefGoogle Scholar
  19. Romero M.C., Cazau M.C., Giorgieri S., Arambarri A.M. (1998). Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ. Pollut., 101: 355–359.CrossRefGoogle Scholar
  20. Yang Q.X., Yang M., Pritsch K., Yediler A., Hagn A., Schloter M., Kettrup A. (2003). Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol. Lett., 25: 709–713.CrossRefPubMedGoogle Scholar
  21. Yuan S.Y., Wei S.H., Chang B.V. (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41: 1463–1468.CrossRefPubMedGoogle Scholar
  22. Zinjarde S.S., Pant A.A. (2002). Hydrocarbon degraders from tropical marine environments. Mar. Pollut. Bull., 44: 188–121.Google Scholar

Copyright information

© University of Milan and Springer 2006

Authors and Affiliations

  • Abd El-Latif Hesham
    • 1
    • 2
  • Zhenyu Wang
    • 1
  • Yu Zhang
    • 1
  • Jing Zhang
    • 1
  • Wenzhou Lv
    • 1
  • Min Yang
    • 1
    Email author
  1. 1.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingP.R. China
  2. 2.Genetic Department, Faculty of AgricultureAssiut UniversityAssiutEgypt

Personalised recommendations