Universal stage grain fabric statistics on dendrites of mine cave pearls
- 55 Downloads
- 8 Citations
Abstract
Universal stage investigations show, in stereographic projection, the two-dimensional and three-dimensional growth forms of cave-pearl dendrites. This fabric “picture” permits the application of the Neumann-Minnigerode-Curie principle: the symmetry elements of the cause of growth and the symmetry elements of the effects (in this case, the dendrites) are connected by the symmetry elements of the medium, in this case, the calcite crystal. The dendrites appear in the nuclei of mine cave pearls, in intermediate layers separated by regular ooid layers, or on cave-pearl surfaces. The main factors that trigger dendritic growth are the presence of supersaturated or highly supersaturated solutions and, in some cases, the presence of impurities, for some calcitic dendrites clearly contain them, while others do not. These inferences are confirmed by field observations in the Ruhr coal mine, by analyses of groundwater in which the cave pearls formed, and by examination of photos of thin sections. Free surface dendrites grow in a three-dimensional tree-like arrangement; dendrites within the cave-pearl body grow mainly in a two-dimensional plane. Cave-pearl dendrites occur in three fabric types: nuclear dendrites, body dendrites, and surface dendrites.
Keywords
Coal Mine Dendritic Growth Calcite Crystal Supersaturated Solution Symmetry ElementPreview
Unable to display preview. Download preview PDF.
References
- Hahne, C., Kirchmayer, M., andOttemann, J., 1968, Höhlenperlen (Cave Pearls), besonders aus Bergwerken des Ruhrgebietes. Modellfälle zum Studium diagenetischer Vorgänge an Einzelooiden. N. Jahrb. Geol. Paläont., Abh., v. 130, p. 1–46.Google Scholar
- Hill, C., andForti, P., 1986, Cave Minerals of the World. National Speleological Society, Huntsville, Alabama, 238 p.Google Scholar
- Jones, B., andKahle, C. F., 1986, Dendritic calcite crystals formed by calcification of algal filaments in a vadose environment. Jour. Sed. Pet., v. 56, p. 217–227.Google Scholar
- Kirchmayer, M., 1969, Kristallisations — und Rekristallisations — gëfuge in Höhlenperlen aus Bergwerken: Sitz. Ber. Österr. Akad. Wisss. Math. — Naturwiss., Kl. I, v. 177, p. 233–245.Google Scholar
- Kirchmayer, M., 1984, Ueber das P. Curie’sche Symmetrie-Konzept und die Schriftgranit-Quarze: Mitt. Abt. Miner. Landesmuseum Joanneum Graz, v. 52, 11 (79) — 17 (85).Google Scholar
- Kirchmayer, M., 1986, Gefügekundliche Studien: Prinzip und seine Anwendung. Heidelberger Geowiss. Abh., v. 6, p. 221–232.Google Scholar
- Koritnig, S., 1982, Dendriten: Aufschluss, v. 33, p. 227–233.Google Scholar
- Mueller, E., 1979, Bild — Begriff — Beschreibung — Mineraleigenschaften fotografiert: Mineralien-Magazin, v. 3, p. 443–446.Google Scholar
- Paufler, P., 1986, Physikalische Kristallographie, 32–34, VCH Verlagsgesellschaft, Weinheim, Germany.Google Scholar
- White, W.E., 1978, Cave Pearls,in Fairbridge, R. W.; and Bourgeois, J., eds., The Encyclopedia of Sedimentology v. VI. Dowdon, Hutchinson, & Ross, Stroudsburg, Pennsylvania, p. 109–110.Google Scholar
- Zoltai, T., andStout, J.H., 1984, Mineralogy; Concepts and Principles. Burgess Press, Minneapolis, Minnesota.Google Scholar