Journal of Digital Imaging

, 4:21 | Cite as

Three-dimensional display of cortical anatomy and vasculature: Magnetic resonance angiography versus multimodality integration

  • Christopher J. Henri
  • G. Bruce Pike
  • D. Louis Collins
  • Terence M. Peters
Digital Imaging Basics


We present two methods for acquiring and viewing integrated three-dimensional (3D) images of cerebral vasculature and cortical anatomy. The aim of each technique is to provide the neurosurgeon or radiologist with a 3D image containing information which cannot ordinarily be obtained from a single imaging modality. The first approach employs recent developments in MR which is now capable of imaging flowing blood as well as static tissue. Here, true 3D data are acquired and displayed using volume or surface rendering techniques. The second approach is based on the integration of x-ray projection angiograms and tomographic image data, allowing a composite image of anatomy and vasculature to be viewed in 3D. This is accomplished by superimposing an angiographic stereo-pair onto volume rendered images of either CT or MR data created with matched viewing geometries. The two approaches are outlined and compared. Results are presented for each technique and potential clinical applications discussed.

Key Words

magnetic resonance angiography stereoscopic angiography stereotactic neurosurgery three-dimensional imaging 


  1. 1.
    Axel L, Shimakawa A, MacFall J: A time-of-flight method of measuring flow velocity by magnetic resonance imaging. Magn Reson Imag 4:199–205, 1986CrossRefGoogle Scholar
  2. 2.
    Dixon WT, Du LN, Faul DD, et al: Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med 3:454–462, 1986CrossRefPubMedGoogle Scholar
  3. 3.
    Nishimura DG, Macovski A, Pauly JM, et al: MR angiography by selective inversion recovery. Magn Reson Med 4:193–202, 1987CrossRefPubMedGoogle Scholar
  4. 4.
    Moran PR, Saloner D, Tsui BMW: NMR velocity-selective excitation composites for flow and motion imaging and suppression of static tissue signal. IEEE Trans Med Imag 6:141–147, 1987CrossRefGoogle Scholar
  5. 5.
    Groen JP, de Graaf RG, Van Dijk P: MR angiography based on inflow. Proc Soc Magn Reson Med, San Francisco, CA 1988, p 906Google Scholar
  6. 6.
    Keller PJ, Drayer BP, Fram EK, et al: MR angiography with two-dimensional acquisition and three-dimensional display. Radiology 173:527–532, 1989PubMedGoogle Scholar
  7. 7.
    Van Dijk P: Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 8:429–436, 1984CrossRefPubMedGoogle Scholar
  8. 8.
    Dumoulin CL, Hart HR: Magnetic resonance angiography. Radiology 161:717–720, 1986PubMedGoogle Scholar
  9. 9.
    Laub GA, Kaiser WA: MR angiography with gradient motion refocusing. J Comput Assist Tomogr 12:377–382, 1988CrossRefPubMedGoogle Scholar
  10. 10.
    Van Wedeen J, Meuli RA, Edlemen RR, et al: Projective imaging of pulsitile flow with magnetic resonance. Science 230:946–949, 1985CrossRefPubMedGoogle Scholar
  11. 11.
    Pike GB, Collins L, Peters TM: Volume rendering of 3-D magnetic resonance angiograms. Proc Soc Magn Reson Med Amsterdam, p 868, 1989Google Scholar
  12. 12.
    Rusinek H, Litt A, Weinreb J: Graphic display of magnetic resonance angiography. Proc Soc Magn Reson Med Amsterdam, The Netherlands, 1989, p 870Google Scholar
  13. 13.
    Cline HE, Dumoulin CL, Hart HR, et al: 3D reconstruction of the brain from magnetic resonance images using a connectivity algorithm. Magn Reson Imag 5:345–352, 1987CrossRefGoogle Scholar
  14. 14.
    Rubin JM, Sayre RE: A computer-aided technique for overlaying cerebral angiograms onto computed tomograms. Invest Radiol 13:362–367, 1978CrossRefPubMedGoogle Scholar
  15. 15.
    Hoffmann KR, Doi K, Chan HP, et al: Computer reproduction of the vasculature using an automated tracking method. Proc SPIE Med Imag 767:449–453, 1987Google Scholar
  16. 16.
    Barillot C, Gibaud B, Scarabin JM, et al: 3D reconstruction of cerebral blood vessels. IEEE Comput Graph App 5:13–19, 1985CrossRefGoogle Scholar
  17. 17.
    Smets C, Vandermeulen D, Suetens P, et al: Knowledge-based system for the 3-D reconstruction and representation of the cerebral blood vessels from a pair of stereoscopic angiograms. Proc SPIE Med Imag III, 1092:130–138, 1989Google Scholar
  18. 18.
    Olivier A, Peters TM, Bertrand G: Stereotactic system and apparatus for use with MRI, CT, and DSA. Appl Neurophysiol 48:94–96, 1986Google Scholar
  19. 19.
    Peters TM, Clark JA, Olivier A, et al: Integrated stereotaxic imaging with CT, MR imaging, and digital subtraction angiography. Radiology 161:821–826, 1986PubMedGoogle Scholar
  20. 20.
    Sutherland IE: Three-dimensional data input by tablet. IEEE 62:453–471, 1974CrossRefGoogle Scholar
  21. 21.
    Drebin R, Carpenter L, Hanrahan P: Volume rendering. ACM Comput Graph 22: 65–74, 1988CrossRefGoogle Scholar
  22. 22.
    Levoy M. Display of surfaces from volume data. IEEE Comput Graph, Appl 29–37, May, 1988CrossRefGoogle Scholar
  23. 23.
    Henri C, Collins L, Peters TM, et al: Three-dimensional interactive display of medial images for stereotactic neurosurgery planning. Proc. SPIE Med Imag III 1092:67–74, 1989Google Scholar
  24. 24.
    Strat T: Recovering the camera parameters from a transformation matrix. Proc DARPA Image Understanding Workshop, New, Orleans, LA, 264–271, 1984Google Scholar
  25. 25.
    Peters TM, Clark JA, Pike GB, et al: Stereotactic neurosurgery planning on a personal-computer-based work station. J Digit Imag 2:75–81, 1989CrossRefGoogle Scholar
  26. 26.
    Wood ML, Silver M, Runge VM: Optimization of spoiler gradients in FLASH MRI. Magn Reson Imag 5:455–463, 1987CrossRefGoogle Scholar
  27. 27.
    Frahn JF, Hanicke W, Merboldt KD: Transverse coherence in rapid FLASH NMR imaging. J Magn Reson 72:307–314, 1987Google Scholar
  28. 28.
    Porter T, Duff T: Compositing digital images. ACM Comput Graph 18:253–259, 1984CrossRefGoogle Scholar

Copyright information

© Society of Photo-optical Instrumentation Engineers 1991

Authors and Affiliations

  • Christopher J. Henri
    • 1
  • G. Bruce Pike
    • 1
  • D. Louis Collins
    • 1
  • Terence M. Peters
    • 1
  1. 1.NeuroImaging Laboratory and Department of Radiology, McConnell Brain Imaging Centre, Montreal Neurological InsituteMcGill UniversityMontrealCanada

Personalised recommendations