Advertisement

European Journal of Psychology of Education

, Volume 22, Issue 2, pp 131–151 | Cite as

Approaches to learning and study orchestrations in high school students

  • Francisco CanoEmail author
Article

Abstract

In the framework of the SAL (Students’ approaches to learning) poosition, the learning experience (approaches to learning and study orchestrations) of 572 high school students was explored, examining its interrelationships with some personal and familial variables. Three major results emerged. First, links were found between family’s intellectual climate and students’ approaches to learning, in particular with Deep appraoch: The better the family’s intellectual climate the higher student’ scores on Deep approach. Second, along with general intelligence, these approaches predicted students’ academic achievement, higher grades being obtained by these students who scored lower in Surface learning approach and higher in Deep learning approach. Three, students from the four study orchestrations reported in previous research (two displaying conceptual consonance: Deep and Surface approaches, and the other two conceptual dissonance: high-high and low-low, in both Deep and Surface approaches) showed different profiles in some variables (e.g., metacognitive learning strategies, family’s intellectual climate, academic achievement), worse scores being obtained by those who orchestrated their study either in surface or in conceptually dissonant ways. These relationships shed more light on the nature of high school students ‘learning experience, and help to provide an integrated view of students’ webs of experience.

Key words

Academic performance Approches to learning Consonance and dissonance Family intellectual climate Study orchestrations 

Résumé

Dans le cadre de la ligne de recherche ‘Perspectives d’apprentissage des étudiants’ on a exploré le processus de l’apprentissage (perspectives d’apprentissage et orchestrations d’études) de 572 lycéens, en observant les diverses relations de parenté de ce processus avec certaines variables personnelles et familiales. De cette recherche, ont surgi quatre résultats fondamentaux. En premier lieu, on a détecté un rapport entre le climat intellectuel de la famille et les perspectives d’apprentissage des étudiants, en particulier avec la perspective profonde: plus le climat intellectuel familial était élevé, meilleurs furent les résultats des étudiants au sein de la perspective profonde. En second lieu, de la même façon que l’intelligence générale, ces perspectives pronostiquèrent le rendement académique des étudiants, obtenant les meilleures notes ceux qui avaient de bas résultats dans la perspective superficielle et des résultats élevés dans la perspective profonde. En troisième lieu, les étudiants, appartenant à chacune des quatre orchestrations d’étude surgies à partir d’une recherche préalable (deux d’entre elles montrant une consonance conceptuelle: perspective profonde et superficielle, les deux autres une dissonance conceptuelle: élevé-élevé et bas-bas dans les deux perspectives, la profonde et la superficielle), montrèrent différents profils dans certaines variables (e.g., stratégies métacognitives de l’apprentissage, climat intellectuel de la famille, rendement académique), obtenant les pires résultats ceux qui orchestraient leurs études d’une façon superficielle ou (d’une façon) dissonante d’un point de vue conceptuel. Ces rapports nous aident à voir plus clair la nature du processus de l’apprentissage des étudiants, et à nous fournir une vision intégrée du tissu de l’expérience des étudiants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychological Association (2001).Publication Manual of the American Psychological Association (5th ed.). DC: Author.Google Scholar
  2. Biggs, J.. (1984). Learning strategies, student motivation patterns, and subjectively perceived success. In J.R. Kirby (Ed.),Cognitive and educational performance (pp. 111–134), New York: Academic Press.Google Scholar
  3. Biggs, J.. (1987).Learning Process Questionnaire. Melbourne: Australian Council for Educational Research.Google Scholar
  4. Biggs, J.. (1993). What do inventories of students’ learning processes really measure? A theoretical review and clarification.British Journal of Educational Psychology.63, 1–17.Google Scholar
  5. Biggs, J.B. (2001). Enhancing learning: A matter of style or approach? In R.J. Sternberg & L.F. Zhang (Eds.),Perspectives on thinking, learning, and cognitive styles (pp. 73–102). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.Google Scholar
  6. Biggs, J., Kember, D., & Leung. (2001). The revised two-factor Study Process Questionnaire: R-SPQ-2F.British Journal of Educational Psychology, 71, 133–149.CrossRefGoogle Scholar
  7. Black, J.D. (1961).The D-48 Test. Preliminary manual. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  8. Cano, F. (2005). Consonance and dissonance in students’ learning experience.Learning and Instruction.15, 201–223.CrossRefGoogle Scholar
  9. Cliff, A. (2000). Dissonance in first-year students’ reflections on their learning.European Journal of Psychology of Education, 15(1), 49–60.CrossRefGoogle Scholar
  10. Cohen, J. (1988).Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  11. Dart, B., Burnet, P., Boulton-Lewis, G., Campbell, J., Smith, D., & McCrindle, A. (1999). Classroom learning environments and students’ approaches to learning.Learning Environments Research.2(2), 137–156.CrossRefGoogle Scholar
  12. Dart, B.C., Burnett, P.C., Purdie, N., Boulton-Lewis, G., Campbell, J., & Smith (2000). Students’ conceptions of learning, the classroom environment, and approaches to learning.The Journal of Educational Research, 93(4), 262–270.Google Scholar
  13. Diseth, A. (2002). The relationship between intelligence, approaches to learning and academic achievement.Scandinavian Journal of Educational Research, 46(2), 219230.CrossRefGoogle Scholar
  14. Dixon, W.J. (Ed.) (1985).BMDP Statistical Software. Berkeley: University of California.Google Scholar
  15. Entwistle, N.J. (1981).Styles of learning and teaching. 1. Educational Psychology. New York: John Wiley and Sons.Google Scholar
  16. Entwistle, N.J. (1987). A model of the teaching-learning process derived from research on student learning. In J.T.E. Richardson, M.N. Eysenck & D. Warren-Piper (Eds.),Student learning research in education and cognitive psychology (pp. 13–28). London: S.R.H.E. and Open University Press.Google Scholar
  17. Entwistle, N., & Ramsden, P., (1983).Understanding student learning. London: Croom Helm.Google Scholar
  18. Entwistle, N.J., & Waterston, S., (1988). Approaches to studying and levels of processing in university students.British Journal of Educational Psychology, 58, 258–265.Google Scholar
  19. Entwistle, N., Hanley, M., & Hounsell, D. (1979). Identifying distinctive approaches to studying.Higher Education, 8, 365–380.CrossRefGoogle Scholar
  20. Entwistle, N., McCune, V., & Walker, P.. (2001). Conceptions, styles and approaches within higher education: analytic abstractions and everyday experience. In: R.J. Sternberg & L.F. Zhang (Eds.),Perspectives on thinking, learning, and cognitive styles (pp. 103–136). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.Google Scholar
  21. Entwistle, N., Meyer, J.H.F., & Tait, H., (1991). Student failure: Disintegrated patterns of study strategies and perceptions of the learning environment.Higher Education, 21, 249–261.CrossRefGoogle Scholar
  22. Entwistle, N., Tait, H., & McCune, V.. (2000). Patterns of response to an approaches to studying across contrasting groups and contexts.European Journal of Psychology of Education, 15(1), 33–48.CrossRefGoogle Scholar
  23. Felner, R., Aber, M.S., Primavera, J., & Cauce, A.M.. (1985). Adaptation and vulnerability in high-risk adolescents: An examination of environmental mediators.American Journal of Community Psychology, 13, 365–379.CrossRefGoogle Scholar
  24. Fraser, B.J.. (1991). Two decades of classroom environment research. In B.J. Fraser & H.J. Walberg (Eds.),Educational environments: Evaluation, antecedents, and consequences (pp. 3–27). New York: Pergamon.Google Scholar
  25. Georgiou, S.N., & Christou, C.. (2000). Family parameters of achievement: a structural equation model.European Journal of Psychology of Education, 15(3), 297–311.CrossRefGoogle Scholar
  26. Gough, H.G., & Domino, G.. (1963). The D-48 as a measure of general ability among grade school children.Journal of Consulting Psychology, 27, 344–349.CrossRefGoogle Scholar
  27. Handel, A.. (1973). The D-48 as a measure of general ability among adolescents in Israel.Journal of Cross-Cultural Psychology, 4(3), 302–313.CrossRefGoogle Scholar
  28. Herzberg, P.A.. (1969). The parameters of cross-validation.Psychometrika Monograph Supplement, 16, 1–67.Google Scholar
  29. Huebner, E., & McCullough, G.. (2000). Correlates of school satisfaction among adolescents.The Journal of Educational Research.93(5), 331–335.Google Scholar
  30. Kember, D., & Leung, D.Y.. (1998). The dimensionality of approaches to learning: an investigation with confimatory factor analysis on the structure of the SPQ and LPQ.British Journal of Educational Psychology, 68, 395–407.Google Scholar
  31. Kember, D., Wong, A., & Leung, D.Y.P.. (1999). Reconsidering the dimensions of approaches to learning.British Journal of Educational Psychology, 69, 323–343.CrossRefGoogle Scholar
  32. Lindblom-Ylänne, S.. (2003). Raising students’ awareness of their approaches to study.Innovations in Education and teaching international, 41(4), 405–421.CrossRefGoogle Scholar
  33. Lindblom-Ylänne, S., & Lonka, K.. (1999). Individuals ways of interacting with the learning environment — Are they related to study success?Learning and Instruction, 9(1), 1–18.CrossRefGoogle Scholar
  34. Lindblom-Ylänne, S., & Lonka, K.. (2000). Dissonant study orchestrations of high-achieving university students.European Journal of Psychology of Education, 15(1), 19–32.CrossRefGoogle Scholar
  35. Long, W.F.. (2003). Dissonance detected by cluster analysis of responses to the Approaches and Study Skills Inventory for students.Studies in Higher Education, 28(1), 21–35.CrossRefGoogle Scholar
  36. Marjoribanks, K.. (1977). Affective and environmental correlates of cognitive performance.The Journal of Educational Research.71, 3–8.Google Scholar
  37. Marjoribanks, K.. (1979).Families and their learning environments: An empirical analysis. London: Routledge & Kegan Paul.Google Scholar
  38. Marjoribanks, K.. (2005). Family environments and children’s outcomes.Educational Psychology, 25(6), 647–657.CrossRefGoogle Scholar
  39. Martínez-Pons, M.. (1996). Test of a model of parental inducement of academic self-regulation.The Journal of Experimental Education, 64(3), 213–227.Google Scholar
  40. Marton, F.. (1981). Phenomenography — Describing conceptions of the world around us.Instructional Science, 10, 177–200.CrossRefGoogle Scholar
  41. Marton, F., & Säljö, R.. (1976a). On qualitative differences in learning. I — Outcome and process.British Journal of Educational Psychology, 46, 4–11.Google Scholar
  42. Marton, F., & Säljö, R.. (1976b). On qualitative differences in learning. II — Outcome as a function of the learner’s conception of the task.British Journal of Educational Psychology, 46, 115–127.Google Scholar
  43. Marton, F., Watkins, D., & Tang, C.. (1997). Discontinuities and continuities in the experience of learning: An interview study of high-school student in Hong Kong.Learning & Instruction.7(1), 21–48.CrossRefGoogle Scholar
  44. McMillan, D., & Hiltonsmith, R.. (1982). Adolescent at home: An exploratory study of the relationship between perception of family social climate, general well-being, and actual behavior in the home setting.Journal of Youth and Adolescence, 11, 301–315.CrossRefGoogle Scholar
  45. Meyer, J.H.F.. (1991). Study orchestration: the manifestation, interpretation and consequences of contextualised approaches to studying.Higher Education, 22, 297–316.CrossRefGoogle Scholar
  46. Meyer, J.H.F.. (2000). The modelling of ‘dissonant’ study orchestration in higher education.European Journal of Psychology of Education.15(1), 5–18.CrossRefGoogle Scholar
  47. Meyer, J.M., & Shanaham, M.P.. (2003). Dissonant forms of ‘memorising’ and ‘repetition’.Studies in Higher Education, 28(1), 5–20.CrossRefGoogle Scholar
  48. Meyer, J.H.F., Parsons, P., & Dunne, T.T.. (1990). Study orchestration and learning outcome: Evidence of association over time among disadvantaged students.Higher Education, 20, 245–269.CrossRefGoogle Scholar
  49. Moos, R.H.. (1991). Connections between school, work, and family settings. In B.J. Fraser & H.J. Walberg (Eds.),Educational environments: Evaluation, antecedents, and consequences (pp. 29–53). New York: Pergamon.Google Scholar
  50. Moos, R., & Moos, B.. (1994).Family environment scale manual: Development, applications, and research. Palo Alto, CA: Consulting Psychologist Press.Google Scholar
  51. Peleg-Popko, O., & Kligman, A.. (2002). Family environment, discrepancies between perceived actual and desirable environment, and children’s test and trait anxiety.British Journal of Guidance & Counselling, 30(4), 451–466.CrossRefGoogle Scholar
  52. Pintrich, P.R., & De Groot, E.V.. (1990). Motivational and self-regulated learning components of classroom academic performance.Journal of Educational Psychology, 82(1), 33–40.CrossRefGoogle Scholar
  53. Prosser, M, Ramsden, P., Trigwell, K., & Martin, E.. (2003). Dissonance in experience of teaching and its relation to the quality of student learning.Studies in Higher Education, 28(1), 37–48.CrossRefGoogle Scholar
  54. Prosser, M., Trigwell, K., Hazel, E., & Waterhouse, F.. (2000). Students’ experiences of studying physics concepts: The effects of disintegrated perceptions and approaches.European Journal of Psychology of Education.15(1), 61–74.CrossRefGoogle Scholar
  55. Rosnow, R.L., & Rosenthal, R.. (1989). Statistical procedures and the justification of knowledge in psychological science.American Psychologist.44, 1276–1284.CrossRefGoogle Scholar
  56. Ryan, B.A., & Adams, G.R.. (1995). The family-school relationships model. In B.A. Ryan & G.R. Adams (Eds.),The family-school connection: Theory research, and practice (pp. 3–28). Thousands Oaks, CA: Sage.Google Scholar
  57. Säljö, R. (1982). Learning and understanding: A study of differences in constructing meaning from a text. Gothenhurg:Acta Universitatis Gothoburgensis Google Scholar
  58. Selmes, J.P.. (1987).Improving study skills London: Hodder and Stoughton.Google Scholar
  59. Schmidt, A., & Padilla, B.. (2003). Self-esteem and family challenge: An investigation of their effects on achievement.Journal of Youth and Adolescence, 37(1), 37–46.CrossRefGoogle Scholar
  60. Snyder, P., & Lawson, S.. (1993). Evaluating results using corrected and uncorrected effect size estimates.Journal of Experimental Education, 61)(4), 334–349.Google Scholar
  61. Trigwell, K., & Prosser, M.. (1991a). Improving the quality of student learning: The influence of learning context and student approaches to learning on learning outcomes.Higher Education, 22, 251–266.CrossRefGoogle Scholar
  62. Trigwell, K., & Prosser, M.. (1991b). Relating approaches to study and quality of learning outcomes at the course level.British Journal of Educational Psychology, 61, 265–275.Google Scholar
  63. Van Rossum, E.J., & Schenk, S.M.. (1984). The relationship between learning conception, study strategy and learning outcome.British Journal of Educational Psychology, 54, 73–83.Google Scholar
  64. Vermunt, J., & Minnaert, A.. (2003). Dissonance in student learning patterns: When to revise theory?Studies in Higher Education, 28(1), 49–61.CrossRefGoogle Scholar
  65. Vermunt, J.D., & Verloop, N., (2000). Dissonance in students’ regulation of learning processes.European Journal of Psychology of Education, 15(1), 75–87.CrossRefGoogle Scholar
  66. Watkins, D.. (2001). Correlates of approaches to learning: A cross-cultural meta-analysis. In R.J. Sternberg & L.F. Zhang (Eds.),Perspectives on thinking, learning, and cognitive styles (pp. 165–195). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.Google Scholar
  67. Webb, G.. (1986). Factors affecting achievement in the University of Cambridge GCE A-Level geography examination.Educational Research, 28(2), 132–138.CrossRefGoogle Scholar
  68. Wong, N., & Watkins, D.. (1998). A longitudinal study of the psychosocial environmental and learning approach in the Hong Kong classroom.The Journal of Educational Research, 91(4), 247–254.CrossRefGoogle Scholar
  69. Zhang, L.. (2000). University students’ learning approaches in three cultures: An investigation of Biggs’ 3P model.The Journal of Psychology, 134(1), 37–55.Google Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisbon, Portugal/ Springer Netherlands 2007

Authors and Affiliations

  1. 1.Faculty of Psychology, Department of Educational PsychologyUniversity of GranadaGranadaSpain

Personalised recommendations