Advertisement

p-adic representations and vector bundles on Mumford curves

Article

Abstract

Christopher Deninger andAnnette Werner constructed a functor that associates representations of the algebraic fundamental group of an algebraic curve to a class of vector bundles on that curve. We compare this to a construction byFaltings for Mumford curves that associates representations of the Schottky group to semistable vector bundles of degree 0. We prove that for a certain class of vector bundles on Mumford curves the constructions induce isomorphic representations.

2000 Mathematics Subject Classification

11G20 14F05 14H30 12J25 

References

  1. [1]
    Y. André,Period mappings and differential equations. From Cto Cp. MSJ Memoirs, vol. 12, Tohoku-Hokkaido lectures in arithmetic geometry, Mathematical Society of Japan, Tokyo, 2003.Google Scholar
  2. [2]
    C. Deninger andA. Werner, Vector bundles and p-adic representations I. preprint (2003).Google Scholar
  3. [3]
    —, Vector bundles onp-adic curves and parallel transport.Ann. Sci. École Norm. Sup. (4)38 (2005), no. 4, 553–597.MATHMathSciNetGoogle Scholar
  4. [4]
    G. Faltings, Semistable vector bundles on Mumford curves.Invent. Math. 74 (1983), no. 2, 199–212.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    —, Ap-adic Simpson correspondence.Adv. Math. 198 (2005), no. 2, 847–862.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Fresnel andM. van der Put,Rigid analytic geometry and its applications. Progress in Mathematics218, Birkhäuser Boston Inc., Boston, MA, 2004.Google Scholar
  7. [7]
    L. Gerritzen andM. van der Put, Schottky groups and Mumford curves. Lecture Notes in Mathematics817, Springer, Berlin, 1980.Google Scholar
  8. [8]
    J. Giraud,Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften179, Springer-Verlag, Berlin, 1971.Google Scholar
  9. [9]
    A. Grothendieck, Éléments de géométrie algébrique. I – IV.Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967).Google Scholar
  10. [10]
    —,Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris), 3, Société Mathématique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie 1960–61. Lecture Notes in Math.224, Springer, Berlin.Google Scholar
  11. [11]
    U. Köpf,Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen.Sehr. Math. Inst. Univ. Münster (2)7 (1974), iv+72.Google Scholar
  12. [12]
    D. Mumford, Projective invariants of projective structures and applications. In:Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 526–530.Google Scholar
  13. [13]
    —, An analytic construction of degenerating curves over complete local rings.Compositio Math. 24 (1972), 129–174.MATHMathSciNetGoogle Scholar
  14. [14]
    M. S. Narasimhan andC. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface.Ann. of Math. (2)82 (1965), 540–567.CrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Raynaud, Géométrie analytique rigide d’après Täte, Kiehl, …. In:Table Ronde d’Analyse non archimédienne (Paris, 1972), Soc. Math. France, Paris, 1974, pp. 319–327.Bull. Soc. Math. France, Mém. 39–40.Google Scholar
  16. [16]
    M. van der Put andM. Reversat, Fibrés vectoriels semi-stables sur une courbe de Mumford.Math. Ann. 273 (1986), no. 4, 573–600.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Weil, Généralisation des fonctions abéliennes.J. Math. Pures Appl. 17 (1938), 47–87.MATHGoogle Scholar

Copyright information

© Mathematische Seminar 2007

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität MünsterMünsterGermany

Personalised recommendations