Irish Journal of Medical Science

, Volume 171, Issue 2, pp 105–109

Robert Graves Memorial Lecture Diabetes and atherosclerosis — a gut review

  • G. H. Tomkin
Review

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in diabetic subjects with type 2 diabetes and in non diabetic subjects with and without prior myocardial infarction.N Eng J Med 1998; 339: 229–34.CrossRefGoogle Scholar
  2. 2.
    Stamler JS, Vaccaro O, Neaton JD, Wentworth D. Diabetes other risk factors and 12-year cardiovascular mortality for men screened in the multiple risk factor intervention trialDiabetes Care 1993; 16: 434–44.CrossRefPubMedGoogle Scholar
  3. 3.
    Sniderman AD, Scantlebury T, Cianflone K. Hypertriglyceridaemic hyperapo B: The unappreciated atherogenic dyslipoprotinaemia in type 2 diabetes mellitus,Ann Intern Med 2001; 135: 447–59.PubMedGoogle Scholar
  4. 4.
    Tomkin GH, Owens D. ApoB lipoproteins, diabetes and atherosclerosis.Diabetes Metabol Res Rev 2001; 17: 27–43.CrossRefGoogle Scholar
  5. 5.
    O’Meara N, Devery R, Owens D et al. Serum lipoproteins and cholesterol metabolism in two hypercholesterolaemic rabbit models.Diabetologia 1991; 34: 139–43.CrossRefPubMedGoogle Scholar
  6. 6.
    O’Meara N, Devery R, Owens D et al. Cholesterol metabolism in the ailoxan-induced diabetic rabbit.Diabetes 1990; 39: 626–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Gleeson A, Owens D, Collins P, Johnson A, Tomkin GH. The relationship between cholesterol absorption and intestinal cholesterol synthesis in the diabetic rat model.Internat J Exp Diab Res 2000; 1: 203–10.CrossRefGoogle Scholar
  8. 8.
    Phillips ML, Pullinger C, Kroes I et al. A single copy of apolipoprotein B48 is present on the human chylomicron remnant.J Lipid Res 1997; 38: 1170–7.PubMedGoogle Scholar
  9. 9.
    Hoeg JM, Sviridov DD, Tennyson GE et al. Both apolipoproteins B-48 and B-100 are synthesized and secreted by the human intestine.J Lipid Res 1990; 31: 1761–9.PubMedGoogle Scholar
  10. 10.
    Curtin A, Deegan P, Owens D et al. Alterations in apoiipoprotein B48 in the postprandial state.Diabetologia 1994; 37: 1259–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Curtin A, Deegan P, Owens D et al. Elevated triglyceride-rich lipoproteins in diabetes. A study of apoiipoprotein B-48.Acta Diabetol 1996; 33: 205–10.PubMedGoogle Scholar
  12. 12.
    Taggart C, Gibney J, Owens D et al. The role of dietary cholesterol in the regulation of post-prandial apoiipoprotein B48 levels in diabetes.Diabetic Medicine 1997; 14: 1051–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Karpe F, Steiner G, Uffelman K, Olivercrona T, Hamsten A. Postprandial lipoproteins and the progression of coronary atherosclerosis.Atherosclerosis 1994; 106: 83–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Mero N, Malmstrom R, Steiner G, Taskinen MR, Syvanne M. Postprandial metabolism of apolipoprotein B-48- and B-100 containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease.Atherosclerosis 2000; 150: 167–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Gianturco SH, Ramprasad MP, Song R et al. Apolipoprotein B48 or its apolipoprotein B100 equivalent mediates the binding of triglyceride-rich lipoproteins to their unique human monocyte-macrophage receptor.Arterioscler Thromb Vasc Bid 1998; 18: 968–76.Google Scholar
  16. 16.
    Proctor SD, Mamo JCL. Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall — evidence that plaque cholesterol may be derived from post-prandial lipoproteins.Eur J Clin Invest 1998 28: 497–503.CrossRefPubMedGoogle Scholar
  17. 17.
    Phillips C, Murugasu G, Owens D et al. Improved metabolic control reduces the number of postprandial apolipoprotein B48-containing particles in type 2 diabetes.Atherosclerosis 2000; 148: 283–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Madigan C, Ryan M, Owens D et al. Dietary unsaturated fatty acids in type 2 diabetic patients. Higher levels of postprandial lipoproteins on a linoleic acid-rich sunflower oil diet compared with an oleic acid-rich olive oil diet.Diabetes Care 2000; 23: 1472–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Ryan M, McInerney D, Owens D et al. Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium dependent vasoreactivity.Quart J Med 2000; 93: 85–91.Google Scholar
  20. 20.
    Phillips C, Madigan C, Owens D et al. Detective chylomicron synthesis as a cause of delayed particle clearance in diabetes?Internat J Exp Diab Res 2002 (in press).Google Scholar
  21. 21.
    White DA, Bennett AJ, Billett MA, Salter AM. The assembly of triacylglycerol-rich lipoproteins: an essential role for the microsomal triacylglycerol transfer protein.Br J Nutr 1998; 80: 219–29.PubMedGoogle Scholar
  22. 22.
    Hussain MH. A proposed model for assembly of chylomicronsAtherosclerosis 2000; 148: 1–15.CrossRefPubMedGoogle Scholar
  23. 23.
    Gleeson A, Anderton K, Owens D et al. The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes.Diabetologia 1999; 42: 944–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Phillips C, Anderton K, Bennett A et al. Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidaemia in diabetes.Metabolism 2002 (in press).Google Scholar
  25. 25.
    Phillips C, Owens D, Collins P, Tomkin GH. Microsomal triglyceride transfer protein: The role of insulin resistance in the regulation of chylomicron assembly.Atherosclerosis 2002; 160: 355–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Bernard S, Touzet S, Personne I et al. Association between microsomal triglyceride transfer protein gene polymorphism and biological features of liver steatosis in patients with type 2 diabetes.Diabetologia 2000; 43: 995–99.CrossRefPubMedGoogle Scholar
  27. 27.
    Karpe F, Lundahl B, Ehrenborg E, Eriksson P, Hamsten A. A common functional polymorphism in the promoter region of the microsomai triglyceride transfer protein gene influences plasma LDL levels.Atheroscler Thromb Vasc Biol 1998; 18: 756–61.Google Scholar
  28. 28.
    Austin M, Breslow J, Hermekens CH, Buring TE, Willett WC, 28. Krauss RM. Low density lipoprotein subclass pattern and risk of myocardial infarction.JAMA 1988; 260: 1917–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Gaw A, Packard CJ, Lindsay GM et al. Overproduction of small very low density lipoproteins (sf 20–60) on moderate hypercholesterolaemia: relationship between apoiipoprotein B kinetics and plasma lipoproteins.J Lipid Res 1995; 36: 158–171.PubMedGoogle Scholar
  30. 30.
    Dimimadis E, Griffin M, Owens D et al. Oxidation of low-density lipoprotein in non-insulin dependent diabetes: Its relationship to fatty acid composition.Diabetologia 1995; 38: 1300–06.CrossRefGoogle Scholar
  31. 31.
    Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond Cholesterol; Modifications of LDL which increase its atherogenicity.N Engl J Med 1989; 320: 915–923.PubMedGoogle Scholar
  32. 32.
    Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Glycosylated low-density lipoprotein is more sensitive to oxidation: implications for the diabetic patient?Atherosclerosis 1993; 102: 63–67.CrossRefPubMedGoogle Scholar
  33. 33.
    Dimitriadis E, Griffin M, Owens D et al. Lipoprotein composition in NIDDM. The effect of dietary oleic acid on composition and oxidisability and function of low- and high-density lipoproteins.Diabetologia 1996; 39: 667–76.CrossRefPubMedGoogle Scholar
  34. 34.
    Ryan M, McInerney D, Owens D et al. Diabetes and the Mediterranean diet: a beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium dependent vasoreactivity.Quart J Med 2000; 93: 85–91.Google Scholar
  35. 35.
    Ross R. Atherosclerosis-an inflammatory disease.N Engl J Med 1999; 340(115): 126–32.Google Scholar
  36. 36.
    Salonen JT, Yla-Herttuala S, Yamamoto R et al. Autoantibodies against oxidised low-density lipoprotein predicting myocardial infarction.Atheroscler Thromb Vasc Biol 1997; 17: 3159–63.Google Scholar
  37. 37.
    Griffin M, McInerny D, Collins P et al. Autoantibodies to oxidised LDL are related to LDL fatty acid composition in diabetes.Diabet Med 1997; 14: 741–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Pyorala K, Pedersen TR, Kjekshus J et al. The Scandinavian simvastatin survival study (4S) group. Cholesterol-lowering with simvastatin improves prognosis of diabetic patients with heart disease.Diabetes Care 1997; 20: 614–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Ballantyne CM, Olsson AG, Cook TJ et al. Influence of low high-density lipoprotein cholesterol and elevated triglyceride on coronary heart disease events and response to simvastatin therapy in 4S.Atherosclerosis 2001; 104: 3046–51.Google Scholar
  40. 40.
    Anonymous. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study.Lancet 2001: 357: 905–10.Google Scholar
  41. 41.
    Battula SB, Fitzsimons O, Moreno S et al. Post-prandial apolipoprotein B48 and B100-containing lipoproteins in type 2 diabetes: Do statins have a specific effect on triglyceride metabolism?Metabolism 2000; 49: 1–7.CrossRefGoogle Scholar
  42. 42.
    Kern F. Normal plasma cholesterol in an 88-year-old man who eats 25 eggs a day. Mechanisms of adaption.N Engl J Med 1991; 324: 896–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Bhattacharyya AK, Connor WE. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters.J Clin Invest 1974; 53: 1033–43.CrossRefPubMedGoogle Scholar
  44. 44.
    Berge KE, Tian H, Graf GA et al. Accumulation of dietary cholesterol in sitosterolaemia caused by mutations in adjacent ABC transporters.Science 2000; 290P: 1771–7.CrossRefGoogle Scholar
  45. 45.
    Lee MH, Gordon D, Ott J et al. Fine mapping of a gene responsible for regulating dietary cholesterol absorption; founder effects underlie cases of phytosterolaemia in multiple communities.Euro J Human Genet 2001; 9: 375–84.CrossRefGoogle Scholar
  46. 46.
    Lu K, Lee MH, Hazard S et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively.Am J Hum Gen 2001; 69: 278–90.CrossRefGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • G. H. Tomkin
    • 1
  1. 1.Department of MedicineThe Adelaide and Meath Hospital, Trinity CollegeDublinIreland

Personalised recommendations