Japan Journal of Applied Mathematics

, Volume 5, Issue 1, pp 1–32 | Cite as

Semilinear elliptic equations of Matukuma-type and related topics

  • Wei-Ming Ni
  • Shoji Yotsutani


We investigate the structure of solutions of some semilinear elliptic equations, which include Matukuma’s equation as a special case. It is a mathematical model proposed by Matukuma, an astrophysicist, in 1930 to describe the dynamics of a globular cluster of stars. Equations of this kind have come up both in geometry and in physics, and have been a subject of extensive studies for some time. However, almost all the methods previously developed do not seem to apply to the original Matukuma’s equation. Our results cover most of the cases left open by previous works.

Key words

semilinear elliptic equations astrophysics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive soluions for semilinear problems inR n. Indiana Univ. Math. J.,30, (1981), 141–157.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Chandrasekhar, An Introduction to the Study of Stellar Structure. Univ. Chicago Press, 1939.Google Scholar
  3. [3]
    W.-Y. Ding and W.-M. Ni, On the elliptic equation Δu+Ku (n+2)/(n−2)=0 and related topics. Duke Math. J.,52, (1985), 485–506.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    W.-Y. Ding and W.-M. Ni, On the existence of positive entire solution of a semilinear elliptic equations. Arch. Rational Mech. Anal.,91, (1986), 283–308.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. S. Eddington, The dynamics of a globular stellar system. Monthly Notices Royal Astronom. Soc.,75, (1915), 366–376.Google Scholar
  6. [6]
    R. H. Fowler, Further studies of Emden’s and similar differential equations. Quart. J. Math. (Oxford Ser.),2 (1931), 259–287.CrossRefGoogle Scholar
  7. [7]
    M. Hénon, Numerical experiments on the stability of spherical stellar systems. Astronom. and Astrophys.,24, (1973), 229–238.Google Scholar
  8. [8]
    D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources. Arch Rational Mech. Anal.,49, (1973), 241–269.MATHMathSciNetGoogle Scholar
  9. [9]
    N. Kawano, On bounded entire solutions of semilinear elliptic equations. Hiroshima Math. J.,14 (1984), 125–158.MATHMathSciNetGoogle Scholar
  10. [10]
    N. Kawano, J. Satsuma and S. Yotsutani, On the positive solutions of an Emden-type elliptic equation. Proc. Japan Acad. Ser. A,61, (1985), 181–189.MathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Kawano, J. Satsuma and S. Yotsutani, Existence of positive entire solutions of an Emden-type elliptic equation. Funkcial. Ekvac., to appear.Google Scholar
  12. [12]
    T. Kusano and M. Naito, Oscillation theory of entire solutions of second order superlinear elliptic equations. Funkcial. Ekvac., to appear.Google Scholar
  13. [13]
    T. Matukuma, Dynamics of globular clusters. Nippon Temmongakkai Yoho,1, (1930), 68–89 (In Japanese).Google Scholar
  14. [14]
    T. Matukuma, Sur la dynamique des amas globulaires stellaires. Proc. Imp. Acad.,6, (1930), 133–136.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    T. Matukuma, The Cosmos. Iwanami Shoten, Tokyo, 1938 (In Japanese).Google Scholar
  16. [16]
    K. McLeod and J. Serrin, Uniquenss of solutions of semilinear Poisson equations. Proc. Nat. Acad. Sci. USA.,78, (1981), 6592–6595.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    R. McOwen, Conformal metrics inR 2 with prescribed Gaussian curvature and positive total curvature. Indiana Univ. Math. J.,34, (1985), 97–104.CrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Naito, A note on bounded positive entire solution of semiliner elliptic equations. Hiroshima Math. J.,14, (1984), 211–214.MATHMathSciNetGoogle Scholar
  19. [19]
    W.-M. Ni, On the elliptic equation Δu+K(x)u (n+2)/(n−2)=0 its generalization, and applications in geometry. Indiana Univ. Math. J.,31, (1982), 493–529.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    W.-M. Ni, On the positive radial solutions of some semilinear elliptic equations onR n. Appl. Math. Optim.,9, (1983), 373–380.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    W.-M. Ni, Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations. Proc. Symp. Pure Math., 45, Amer. Math. Soc., 1986, 229–241.Google Scholar
  22. [22]
    W.-M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r)=0. Comm. Pure Appl. Math.,38, (1985), 67–108.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    W.-M. Ni and J. Serrin, Existence and non-existence theorems for ground states for quasilinear partial differential equations. Accad. Naz. dei Lincei,77, (1986), 231–257.Google Scholar
  24. [24]
    W.-M. Ni and S. Yotsutani, On the Matukuma’s equation and related topics. Proc. Japan Acad. Ser. A,62, (1986), 260–263.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    N. Kawano, W.-M. Ni and S. Yotsutani, In preparation.Google Scholar

Copyright information

© JJAM Publishing Committee 1988

Authors and Affiliations

  • Wei-Ming Ni
    • 1
  • Shoji Yotsutani
    • 2
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisU.S.A.
  2. 2.Department of Applied ScienceMiyazaki UniversityMiyazakiJapan

Personalised recommendations