Japan Journal of Applied Mathematics

, Volume 6, Issue 2, pp 259–290 | Cite as

A harmonic calculus on the Sierpinski spaces

  • Jun Kigami


A reconstruction of the well-known theory of calculus on [0, 1] will naturally bring a calculus associated with the harmonic functions, Laplace operator, Gauss-Green’s formula and so on, on theN-Sierpinski space whose Hausdorff dimension is (logN)/(log 2).

Key words

Sierpinski space harmonic difference harmonic function Laplace operator Dirichlet problem for the Poisson’s equation Gauss-Green’s formula Neumann problem for the Poisson’s equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket. Prob. Theo. Rel. Fields,79 (1988), 543–624.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    F. M. Dekking, Recurrent sets. Adv. in Math.,44 (1982), 78–104.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    K. J. Falconer, The Geometry of Fractal Sets. Cambridge, 1985.Google Scholar
  4. [4]
    M. Hata, On the structure of self-similar sets. Japan J. Appl. Math.,2 (1985), 381–414.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. Hata and M. Yamaguti, The Takagi function and its generalization. Japan J. Appl. Math.,1 (1984), 183–199.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    J. E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J.,30 (1981), 713–747.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Kusuoka, A diffusion process on a fractal. Probabilistic Methods in Mathematical Physics, Taniguchi Symp., Katata 1985 (eds. K. Ito, N. Ikeda), Kinokuniya-North Holland, 1987, 251–274.Google Scholar
  8. [8]
    B. B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman, San Francisco, 1982.zbMATHGoogle Scholar
  9. [9]
    P. A. P. Moran, Additive functions of interval and Hausdorff measure. Proc. Camb. Philos. Soc.,42 (1946), 15–23.zbMATHCrossRefGoogle Scholar
  10. [10]
    W. Sierpinski, Sur une courbe dont tout point est un point de ramification. C. R. Acad. Sci. Paris,160 (1915), 302–305.zbMATHGoogle Scholar
  11. [11]
    M. Yamaguti and J. Kigami, Some remarks on Dirichlet problem of Poisson equation. Analyse Mathematique et Applications, Gauthier-Villars, Paris, 1988, 465–471.Google Scholar

Copyright information

© JJAM Publishing Committee 1989

Authors and Affiliations

  • Jun Kigami
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceKyoto UniversityKyotoJapan

Personalised recommendations