Advertisement

Neurodynamics and nonlinear integrable systems of Lax type

  • Yoshimasa Nakamura
Article

Abstract

It is shown that an averaged learning equation in neurodynamics is an integrable gradient system having a Lax pair representation.

Key words

learning equation of Hebb type integrable gradient system Lax pair representation constrained harmonic motion Toda lattice Hopfield model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Amari, Neural theory of association and concept-formation. Biol. Cybern.,26 (1977), 175–186.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Amari and A. Takeuchi, Mathematical theory on formation of category detecting nerve cells. Biol. Cybern.,29 (1978), 127–136.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Baldi and K. Hornik, Neural networks and principal component analysis: learning from examples without local minima. Neural Networks,2 (1989), 53–58.CrossRefGoogle Scholar
  4. [4]
    A.M. Bloch, A completely integrable Hamiltonian system associated with line fitting in complex vector spaces. Bull. Amer. Math. Soc., (New Ser.)12 (1985), 250–254.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    R.W. Brockett, Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems. Linear Algebra Appl.,146 (1991), 79–91; also Proc. 27th IEEE Conf. on Decision and Control, 1988, 799–803.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    P. Deift, F. Lund and E. Trubowitz, Nonlinear wave equations and constrained harmonic motion. Comm. Math. Phys.,74 (1980), 141–188.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    P. Deift, T. Nanda and C. Tomei, Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal.,20 (1983), 1–22.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Geman, Some averaging and stability results for random differential equations. SIAM J. Appl. Math.,36 (1979), 86–105.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. USA,81 (1984), 3088–3092.CrossRefGoogle Scholar
  10. [10]
    P.S. Krishnaprasad, Symplectic mechanics and rational functions. Ricerche Automat.,10 (1979), 107–135.MathSciNetGoogle Scholar
  11. [11]
    H. Kushner and D. Clark, Stochastic Approximation Methods for Constrained and Unconstrained Systems. Appl. Math. Sci., Vol. 26, Springer-Verlag, New York, 1978.Google Scholar
  12. [12]
    J. Moser, Finitely many mass points on the line under the influence of an exponential potential — An integrable system. Dynamical Systems, Theory and Applications (ed. J. Moser), Lecture Notes in Phys., Vol. 38, Springer-Verlag, New York, 1975, 467–497.CrossRefGoogle Scholar
  13. [13]
    Y. Nakamura, A new approach to the linear prediction problem for infinite stationary processes in terms of Riemann-Hilbert transformation theory. IMA J. Math. Control Inform.,6 (1989), 347–358.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Y. Nakamura, Geometry of rational functions and nonlinear integrable systems. SIAM J. Math. Anal.,22 (1991), 1744–1754.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Y. Nakamura, Lax equations associated with a least squares problem and compact Lie algebras. Recent Developments in Differential Geometry (ed. K. Shiohama), Adv. Stud. Pure Math., Vol. 22, Math. Soc. Japan, Tokyo, 1993, 213–229.Google Scholar
  16. [16]
    Y. Nakamura, A new dynamical system that leads to eigenvalues. Japan J. Indust. Appl. Math.,9 (1992), 133–139.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Y. Nakamura, Completely integrable gradient systems on the manifolds of Gaussian and multinomial distributions. Japan J. Indust. Appl. Math.,10 (1993), 179–189.zbMATHMathSciNetGoogle Scholar
  18. [18]
    Y. Nakamura, Gradient systems associated with probability distributions. Japan J. Indust. Appl. Math.,11 (1994), 21–30.zbMATHMathSciNetGoogle Scholar
  19. [19]
    Y. Nakamura, Lax pair and fixed points analysis of Karmarkar’s projective scaling trajectory for linear programming. Japan J. Indust. Appl. Math.,11 (1994), 1–9.zbMATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y. Nakamura, Developments of applied analysis based upon nonlinear integrable systems (in Japanese). Bull. Japan Soc. Indust. Appl. Math.,2 (1992), 330–342.Google Scholar
  21. [21]
    E. Oja, A simplified neuron model as a principal component analyzer. J. Math. Biol.,15 (1982), 267–273.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    E. Oja and J. Karhunen, On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl.,106 (1985), 69–84.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. Rubner and K. Schulten, Development of feature detectors by self-organization, A network model. Biol. Cybernet.,62 (1990). 193–199.CrossRefGoogle Scholar
  24. [24]
    W.W. Symes, TheQR algorithm and scattering for the finite nonperiodic Toda lattice. Physica,4D (1982), 275–280.MathSciNetGoogle Scholar
  25. [25]
    M. Toda, Studies of a non-linear lattice. Phys. Rep.,8 (1975), 1–125.CrossRefMathSciNetGoogle Scholar
  26. [26]
    C. von der Malsburg, Self-organization of orientation sensitive cells in the striate cortex. Kybernetika,14 (1973), 85–100.CrossRefGoogle Scholar

Copyright information

© JJIAM Publishing Committee 1994

Authors and Affiliations

  • Yoshimasa Nakamura
    • 1
  1. 1.Applied Mathematics Laboratory, Department of ElectronicsDoshisha UniversityKyotoJapan

Personalised recommendations