Nuclear spin relaxation in free radicals as revealed in a stimulated electron spin echo experiment

  • L. V. Kulik
  • E. S. Salnikov
  • S. A. Dzuba


Electron spin echo envelope modulation (ESEEM) in a three-pulse stimulated echo experiment, when the time interval between the first and second pulses τ is varied, is attributed to a spontaneous change of the electron spin Larmor frequency in the time intervalT between the second and third pulses, due to the longitudinal relaxation of nearby nuclei. It is observed for nitroxide radicals in glassy matrices in the temperature range of 130–240 K. Nuclear relaxation is assumed to arise from fluctuation of the proton hyperfine interaction, due to fast rotation of the methyl groups. This contribution to ESEEM and the conventional one that is induced by the simultaneous excitation of allowed and forbidden electron spin transitions were found to be multiplicative. As the latter does not depend on the timeT, both contributions can be easily separated. The rate of nuclear spin relaxation was determined, and correlation time of methyl group rotation was estimated by Redfield theory of spin relaxation. Arrhenius parameters of this motion were estimated on the basis of these data and those at 77 and 90 K, where the previously developed approach was used (L.V. Kulik, I.A. Grigor’ev, E.S. Salnikov, S.A. Dzuba, Yu.D. Tsvetkov, J. Phys. Chem. A 106, 12066–12071, 2003).


Electron Paramagnetic Resonance Nitroxide Microwave Pulse Nitroxide Radical Arrhenius Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dikanov S.A., Tsvetkov Yu.D.: Electron Spin Echo Modulation (ESEEM) Spectroscopy. Boca Raton, Fla.: CRC Press 1992.Google Scholar
  2. 2.
    Schweiger A., Jeschke G.: Principles of Pulsed EPR. Oxford: Oxford University Press 2001.Google Scholar
  3. 3.
    Mims W.B., Nassau K., McGee J.D.: Phys. Rev.123, 2059–2069 (1961)CrossRefADSGoogle Scholar
  4. 4.
    Kulik L.V., Dzuba S.A., Grigor’ev I.A., Tsvetkov Yu.D.: Chem. Phys. Lett.343, 315–324 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Kulik L.V., Paschenko S.V., Dzuba S.A.: J. Magn. Reson.159, 237–241 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Borovykh I.V., Kulik L.V., Dzuba S.A., Hoff A.J.: J. Phys. Chem.B 106, 12066–12071 (2002)Google Scholar
  7. 7.
    Kulik L.V., Grigor’ev I.A., Salnikov E.S., Dzuba S.A., Tsvetkov Yu.D.: J. Phys. Chem. A106, 12066–12071 (2003)Google Scholar
  8. 8.
    Shushakov O.A., Dzuba S.A., Tsvetkov Yu.D.: Zh. Strukt. Khim.30, 75 (1989); Tsvetkov Yu.D., Dzuba S.A.: Appl. Magn. Reson.1, 179 (1990)Google Scholar
  9. 9.
    Volodarsky L.B., Grigor’ev I.A., Dikanov S.A., Reznikov V.A., Shchukin G.I. in: Imidazoline Nitroxides: Synthesis and Properties (Volodarsky L.B., ed.), vol. 1, chap. 3. Boca Raton, Fla.: CRC Press 1988.Google Scholar
  10. 10.
    Brustolon M., Maniero A.L., Segre U.: Mol. Phys.55, 713–721 (1985)CrossRefADSGoogle Scholar
  11. 11.
    Brustolon M., Maniero A.L., Ottaviani M.F., Romanelly M., Segre U.: J. Phys. Chem.94, 6589–6594 (1990)CrossRefGoogle Scholar
  12. 12.
    Saxena S., Freed J.H.: J. Phys. Chem. A101, 7998–8008 (1997)CrossRefGoogle Scholar
  13. 13.
    Barbon A., Brustolon M., Maniero A.L., Romanelly M., Brunel L.-C.: Phys. Chem. Chem. Phys.1, 4015 (1999)CrossRefGoogle Scholar
  14. 14.
    Eaton S.S., Harbridge J., Rinard G.A., Eaton G.R., Weber R.T.: Appl. Magn. Reson.20, 151–157 (2001)CrossRefGoogle Scholar
  15. 15.
    Dubinskii A.A., Grishin Y.A., Savitsky A.N., Möbius K.: Appl. Magn. Reson.22, 369–386 (2002)CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • L. V. Kulik
    • 1
  • E. S. Salnikov
    • 2
  • S. A. Dzuba
    • 1
  1. 1.Institute of Chemical Kinetics and CombustionRussian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations