Advertisement

Applied Magnetic Resonance

, Volume 29, Issue 1, pp 65–88 | Cite as

Direct detection of neuronal activity with MRI: Fantasy, possibility, or reality?

  • P. A. Bandettini
  • N. Petridou
  • J. Bodurka
Article

Abstract

Hemodynamic-based functional magnetic resonance imaging (fMRI) techniques have proven to be extremely robust and sensitive methods for noninvasive detection and mapping of human brain activation. Nevertheless, limitations in temporal and spatial resolution as well as interpretation remain because hemodynamic changes accompanying brain activation are relatively sluggish and variable and therefore imprecise measures of neuronal activity. A hope among brain imagers would be to possess a technique that would allow direct mapping of brain activity with spatial resolution on the order of a cortical column and temporal resolution on the order of an action potential or at least a postsynaptic potential. Recent efforts in understanding the direct effects of neuronal activity on MRI signal have provided some degree of hope for those who want a more precise noninvasive brain activation mapping technique than fMRI as we know it now. While the manner in which electrical currents influence MRI signal is well understood, the manner in which neuronal firing spatially and temporally integrates on the spatial scale of an MRI voxel to produce a magnetic field shift and subsequently an NMR phase and/or magnitude change is not well understood. It is also not established that this field shift would be large or long enough in duration to be detected. The objective of this paper is to provide a perspective of the work that has been performed towards the direction of achieving direct neuronal current imaging with MRI. A specific goal is to further clarify what is understood about the theoretical and practical possibilities of neuronal current imaging. Specifically discussed are modeling efforts, phantom studies, in vitro studies, and human studies.

Keywords

Magnetic Field Magnitude Change Magnetic Field Change Postsynaptic Element Bold Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heeger D.J., Ress D.: Nat. Rev. Neurosci.3, 142–151 (2002)CrossRefGoogle Scholar
  2. 2.
    Menon R.S., Kim S.G.: Trends Cogn. Sci.3, 207–216 (1999)CrossRefGoogle Scholar
  3. 3.
    Ogawa S., Lee T.M., Kay A.R., Tank D.W.: Proc. Natl. Acad. Sci. USA87, 9868–9872 (1990)CrossRefADSGoogle Scholar
  4. 4.
    Bandettini P.A. in: Functional MRI (Moonen C.T.W., Bandettini P.A., eds.), pp. 205–220. Berlin: Springer 1999.Google Scholar
  5. 5.
    Bodurka J., Bandettini P.A.: Magn. Reson. Med.47, 1052–1058 (2002)CrossRefGoogle Scholar
  6. 6.
    Konn D., Gowland P., Bowtell R.: Magn. Reson. Med.50, 40–49 (2003)CrossRefGoogle Scholar
  7. 7.
    Xiong J., Fox P.T., Gao J.-H.: Hum. Brain Mapp.20, 41–49 (2003)CrossRefGoogle Scholar
  8. 8.
    Wikswo J., Vanegeraat J.: J. Clin. Exp. Neurophysiol.8, 170–188 (1991)CrossRefGoogle Scholar
  9. 9.
    Song A.W., Takahashi A.M.: Magn. Reson. Imaging19, 763–767 (2001)CrossRefGoogle Scholar
  10. 10.
    Darquie A., Poline J.-B., Poupon C., Saint-Jalmes H., Le Bihan D.: Proc. Natl. Acad. Sci. USA98, 9391–9395 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Prichard J., Zhong J., Petroff O., Gore J.: NMR Biomed.8, 359–364 (1995)CrossRefGoogle Scholar
  12. 12.
    Janz C., Speck O., Hennig J.: NMR Biomed.10, 222–229 (1997)CrossRefGoogle Scholar
  13. 13.
    Hennig J., Janz C., Speck O., Ernst T.: Int. J. Imaging Syst. Technol.6, 203–208 (1995)CrossRefGoogle Scholar
  14. 14.
    Yablonskiy D.A., Ackerman J.H., Raichle M.E.: Proc. Natl. Acad. Sci. USA97, 9819–9819 (2000)CrossRefGoogle Scholar
  15. 15.
    Yablonskiy D.A., Ackerman J.H., Raichle M.E.: Proc. Natl. Acad. Sci. USA97, 7603–7608 (2000)CrossRefADSGoogle Scholar
  16. 16.
    Joy M., Scott G., Henkelman R.: Magn. Reson. Imaging7, 89–94 (1989)CrossRefGoogle Scholar
  17. 17.
    Scott G., Joy M., Armstrong R., Henkelman R.: Magn. Reson. Med.28, 186–201 (1992)CrossRefGoogle Scholar
  18. 18.
    Singh M.: IEEE Trans. Nuclear Sci.41, 349–351 (1994)CrossRefADSGoogle Scholar
  19. 19.
    Bodurka J., Jesmanowicz A., Hyde J., Xu H., Estowski L., Li S.-J.: J. Magn. Reson.137, 265–271 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Kamei H., Iramina J., Yoshikawa K., Ueno S.: IEEE Trans. Magnetics35, 4109–4111 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Hatada T., Sekino M., Ueno S. in: Proceedings of the 12th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, May 12–21, 2004, Kyoto, Japan (Duerk J.Z., ed.), p. 2222. Kyoto: ISMRM 2004.Google Scholar
  22. 22.
    Sekino M., Matsumoto T., Yamaguchi K., Iriguchi N., Ueno S.: IEEE Trans. Magnetics40, 1–3 (2004)CrossRefGoogle Scholar
  23. 23.
    Song A.W., Li T. in: Proceedings of the 12th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, May 12–21, 2004, Kyoto, Japan (Duerk J.L., ed.), p. 1063. Kyoto: ISMRM 2004.Google Scholar
  24. 24.
    Yamaguchi K., Sekino M., Ueno S., Iriguchi N.: J. Appl. Phys.93, 6739–6741 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Cohen M.S.: NeuroImage6, 93–103 (1997)CrossRefGoogle Scholar
  26. 26.
    Hu X., Le T.H., Uğurbil K.: Magn. Reson. Med.37, 877–884 (1997)CrossRefGoogle Scholar
  27. 27.
    Duong T.Q., Kim D.S., Uğurbil K., Kim S.G.: Magn. Reson. Med.44, 231–242 (2000)CrossRefGoogle Scholar
  28. 28.
    Yacoub E., Shmuel A., Pfeuffer J., van de Moortele P.F., Adriany G., Uğurbil K., Hu X.P.: NMR Biomed.14, 408–412 (2001)CrossRefGoogle Scholar
  29. 29.
    Chu R., de Zwart J.A., van Gelderen P., Fukunaga M., Kellman P., Holroyd T., Duyn J.H.: NeuroImage23, 1059–1067 (2004)CrossRefGoogle Scholar
  30. 30.
    Park T.S., Lee S.Y., Park J.-H., Lee S.Y.: Neuroreport15, 2783–2786 (2004)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Kilner J.A., Stephan K.E., Josephs O., Friston K.J. in: Proceedings of the 10th International Conference on Functional Mapping of the Human Brain, Budapest, June 13–17, 2004, p. TH299, 2004.Google Scholar
  32. 32.
    Fawcett I.P., Barnes G.R., Hillebrand A., Singh K.D.: NeuroImage21, 1542–1553 (2004)CrossRefGoogle Scholar
  33. 33.
    Bianciardi M., Cerasa A., Maraviglia B., Hagberg G.E. in: Proceedings of the 10th International Conference on Functional Mapping of the Human Brain, Budapest, June 13–17, 2004, p. TH299, 2004.Google Scholar
  34. 34.
    Petridou N., Bodurka J., Plenz D., Bandettini P.A. in: Proceedings of the 11th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, July 1–16, 2003, Toronto, Ontario, Canada (Lomas D.J., ed.), Toronto: ISMRM 2003.Google Scholar
  35. 35.
    Plenz D., Kital S.T.: Nature400, 677–682 (1999)CrossRefADSGoogle Scholar
  36. 36.
    Gulani V., Purea A., Schmitt P., Griswold M.A., Webb A.G. in: Proceedings of the 12th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, May 12–21, 2004, Kyoto, Japan (Duerk J.L., ed.), p. 2314, Kyoto: ISMRM 2004.Google Scholar
  37. 37.
    Liston A., Salek-Haddadi A., Kiebel S., Turner R., Hamandi K., Lemieux L. in: Proceedings of the 10th International Conference on Functional Mapping of the Human Brain, Budapest, June 13–17, 2004, p. WE366, 2004.Google Scholar
  38. 38.
    Matlachov A.N., Volegov P., Espy M.A., Kraus R.H.J., George J.S. in: Proceedings of the 10th International Conference on Functional Mapping of the Human Brain, Budapest, June 13–17, 2004, p. WE366, 2004.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • P. A. Bandettini
    • 1
    • 2
  • N. Petridou
    • 1
  • J. Bodurka
    • 2
  1. 1.Unit on Functional Imaging MethodsLaboratory of Brain and CognitionBethesdaUSAUSA
  2. 2.Unit on Functional Imaging Methods, Functional MRI FacilityNational Institute of Mental HealthBethesdaUSA

Personalised recommendations