Applied Magnetic Resonance

, 26:327 | Cite as

Experiment and dynamic simulations of radiation damping of laser-polarized liquid129Xe at low magnetic field in a flow system

  • X. Zhou
  • J. Luo
  • X. Sun
  • X. Zeng
  • M. Zhan
  • S. Ding
  • M. Liu


Radiation damping is generally observed when a sample with high spin concentration and high gyromagnetic ratio is placed in a high magnetic field. However, we firstly observed liquid-state129Xe radiation damping with laser-enhanced nuclear polarization at low magnetic field in a flow system in which the polarization enhancement factor for the liquid-state129Xe was estimated to be 5000, and, furthermore, theoretically simulated the envelopes of the129Xe free induction decay and spectral lineshape in the presence of both relaxation and radiation damping with different pulse flip angles and ratios ofT 2 * /T rd. The radiation damping time constantT rd of 5 ms was derived on the basis of the simulations. The reasons of depolarization and the further possible improvements were also discussed.


Nuclear Magnetic Resonance High Magnetic Field Free Induction Decay Water Proton Nuclear Magnetic Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Walker T.G., Happer W.: Phys. Rev. Lett.69, 629–642 (1997)Google Scholar
  2. 2.
    Xu W., Dutta D., Xiong F., Anderson B., Auberbach L., Averett T., Bertozzi W., Black T., Calarco J., Cardman L., Cates G.D., Chai Z.W., Chen J.P., Choi S., Chudakov E., Churchwel S., Corrado G.S., Crawford C., Dale D., Deur A., Djawotho P., Filippone B.W., Finn J.M., Gao H., Gilman R., Glamazdin A.V., Glashausser C., Glöckle W., Golak J., Gomez J., Gorbenko V.G., Hansen J.-O., Hersman F.W., Higinbotham D.W., Holmes R., Howell C.R., Hughes E., Humensky B., Incerti S., Jager C.W., Jensen J.S., Jiang X., Jones C.E., Jones M., Kahl R., Kamada H., Kievsky A., Kominis I., Korsch W., Kramer K., Kumbartzki G., Kuss M., Lakuriqi E., Liang M., Liyanage N., LeRose J., Malov S., Margaziotis D.J., Martin J.W., McCormick K., McKeown R.D., McIlhany K., Meziani Z.-E., Michaels R., Miller G.W., Pace E., Pavlin T., Petratos G.G., Pomatsalyuk R.I., Pripstein D., Prout D., Ransome R.D., Roblin Y., Rvachev M., Saha A., Salmè, G., Schnee M., Shin T., Slifer K., Souder P.A., Strauch S., Suleiman R., Sutter M., Tipton B., Todor L., Viviani M., Vlahovic B., Watson J., Williamson C.F., Witala H., Wojtsekhowski B., Yeh J., Zolnierczuk P.: Phys. Rev. Lett.85, 2900–2904 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Albert M.S., Cates G.D., Driehuys B., Happer W., Saam B., Springer C.S. Jr, Wishnia A.: Nature370, 199–201 (1994)CrossRefADSGoogle Scholar
  4. 4.
    Eberle B., Weiler N., Markstaller K., Kauczor H.-U., Deninger A., Ebert M., Grossmann T., Heil W., Lauer L.O., Roberts T.P.L., Schreiber W.G., Surkau R., Dick W.F., Otten E.W., Thelen M.: J. Appl. Physiol.87, 2043–2052 (1999)Google Scholar
  5. 5.
    Jones G.L., Gentile T.R., Thompson A.K., Chowdhuri Z., Dewey M.S., Snow W.M., Wietfeldt F.E.: Nucl. Instrum. Methods Phys. Res. Sect. A440, 772–776 (2000)CrossRefADSGoogle Scholar
  6. 6.
    Rosenberry M.A., Chupp T.E.: Phys. Rev. Lett.86, 22–25 (2000)CrossRefADSGoogle Scholar
  7. 7.
    Raftery D., Long H., Meersmann T., Grandinetti P.J., Reven L., Pines A.: Phys. Rev. Lett.66, 584–587 (1991)CrossRefADSGoogle Scholar
  8. 8.
    Pietrass T., Bifone A., Pines A.: Surf. Sci.334, L730-L734 (1995)CrossRefGoogle Scholar
  9. 9.
    Bear D., Stoner R.E., Walsworth R.L., Kostelecký V.A., Lane C.D.: Phys. Rev. Lett.85, 5038–5041 (2000); Bear D., Stoner R.E., Walsworth R.L., Kostelecký V.A., Lane C.D.: Phys. Rev. Lett.89, 209902-1 (2002)CrossRefADSGoogle Scholar
  10. 10.
    Rubin S.M., Spence M.M., Pines A., Wemmer D.E.: J. Magn. Reson.152, 79–86 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Verhulst A.S., Liivak O., Sherwood M.H., Vieth H.M., Chuang I.L.: Appl. Phys. Lett.79, 2480–2482 (2001)CrossRefADSGoogle Scholar
  12. 12.
    Driehuys B., Cates G.D., Happer W., Mabuchi H., Saam B., Albert M.S., Wishnia A.: Phys. Lett. A184, 88–92 (1993)CrossRefADSGoogle Scholar
  13. 13.
    Long H.W., Gaede H.C., Shore J., Reven L., Bowers C.R., Kritzenberger J., Pietrass T., Pines A., Tang P., Reimer J.A.: J. Am. Chem. Soc.115, 8491–8492 (1993)CrossRefGoogle Scholar
  14. 14.
    Sun X., Hu H., Zeng X.: Appl. Magn. Reson.16, 363–372 (1999)CrossRefGoogle Scholar
  15. 15.
    Bloembergen N., Pound R.V.: Phys. Rev.95, 8–12 (1954)CrossRefADSGoogle Scholar
  16. 16.
    Bloom S.: J. Appl. Phys.28, 800–805 (1957)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Szoeke A., Meiboom S.: Phys. Rev.113, 585–586 (1959)CrossRefADSGoogle Scholar
  18. 18.
    Bruce C.R., Norberg R.E., Pake G.E.: Phys. Rev.104, 419–420 (1956)CrossRefADSGoogle Scholar
  19. 19.
    Abragam A.: The Principles of Nuclear Magnetism, p. 264. Oxford: Clarendon 1961.Google Scholar
  20. 20.
    Warren W.S., Hames S.L., Bates J.L.: J. Chem. Phys.91, 5895–5904 (1989)CrossRefADSGoogle Scholar
  21. 21.
    Jeener J., Vlassenbroek A., Broekaert P.: J. Chem. Phys.103, 1309–1332 (1995)CrossRefADSGoogle Scholar
  22. 22.
    Vlassenbroek A., Jeener J., Broekaert P.: J. Chem. Phys.103, 5886–5897 (1995)CrossRefADSGoogle Scholar
  23. 23.
    Mao X.A., Wu D., Ye C.H.: Chem. Phys. Lett.204, 123–127 (1993)CrossRefADSGoogle Scholar
  24. 24.
    Mao X.A., Ye C.H.: J. Chem. Phys.99, 7455–7462 (1993)CrossRefADSGoogle Scholar
  25. 25.
    Mao X.A., Guo J.X., Ye C.H.: Phys. Rev. B49, 15702–15711 (1994)CrossRefADSGoogle Scholar
  26. 26.
    Guo J.X., Mao X.A.: J. Phys. II France6, 1183–1193 (1996)CrossRefGoogle Scholar
  27. 27.
    Chen J.H., Mao X.A., Ye C.H.: J. Magn. Reson. A123, 126–130 (1996)CrossRefGoogle Scholar
  28. 28.
    Chen J.H., Mao X.A., Ye C.H.: J. Magn. Reson.124, 490–494 (1997)CrossRefADSGoogle Scholar
  29. 29.
    Chen J.H., Mao X.A.: Chem. Phys. Lett.274, 549–553 (1997)CrossRefADSGoogle Scholar
  30. 30.
    Mao X.A., Guo J.X., Ye C.H.: Chem. Phys. Lett.222, 417–421 (1994)CrossRefADSGoogle Scholar
  31. 31.
    Berthault P., Desvaux H., Go G.L., Pétro M.: Chem. Phys. Lett.314, 52–56 (1999)CrossRefADSGoogle Scholar
  32. 32.
    Warren W.S., Richter W., Andreotti A.H., Farmer B.T. II: Science262, 2005–2009 (1993)CrossRefADSGoogle Scholar
  33. 33.
    Jeener J.: Phys. Rev. Lett.82, 1772–1775 (1999)CrossRefADSGoogle Scholar
  34. 34.
    Sauer K.L., Marion F., Nacher P.J., Tastevin G.: Phys. Rev. B63, 184427-1–184427-4 (2001)CrossRefADSGoogle Scholar
  35. 35.
    Zhou J., Susumui M., van Zijl P.C.M.: Magn. Reson. Med.40, 712–719 (1998)CrossRefGoogle Scholar
  36. 36.
    Wong G.P., Tseng C.H., Pomeroy V.R., Mair R.W., Hinton D.P., Hoffmann D., Stoner R.E., Hersman F.W., Cory D.G., Walsworth R.L.: J. Magn. Reson.141, 217–227 (1999)CrossRefADSGoogle Scholar
  37. 37.
    Gentile T.R., Rich D.R., Thompson A.K., Snow W.M., Jones G.L.: J. Res. Natl. Inst. Stand. Technol.106, 709–729 (2001)Google Scholar
  38. 38.
    Wong-Foy A., Saxena S., Moulé A.J., Bitter H.L., Seeley J.A., McDermott R., Clarke J., Pines A.: J. Magn. Reson.157, 235–241 (2002)CrossRefADSGoogle Scholar
  39. 39.
    Rosenberry M.A., Chupp T.E.: Phys. Rev. Lett.86, 22–25 (2001)CrossRefADSGoogle Scholar
  40. 40.
    Verhulst A.S., Liivak O., Sherwood M.H., Chung I.L.: J. Magn. Reson.155, 145–149 (2002)CrossRefADSGoogle Scholar
  41. 41.
    Zeng X., Wu Z., Call T., Miron E., Schreiber D., Happer W.: Phys. Rev. A31, 260–278 (1985)CrossRefADSGoogle Scholar
  42. 42.
    Moschos A., Reisse J.: J. Magn. Reson.95, 603–606 (1991)Google Scholar
  43. 43.
    Stith A., Hitchens T.K., Hinton D.P., Berr S.S., Driehuys B., Brookeman J.R., Bryant R.G.: J. Magn. Reson.139, 225–231 (1999)CrossRefADSGoogle Scholar
  44. 44.
    Zhou X., Luo J., Sun X., Zeng X., Liu M., Liu W.: Acta Phys. Sin.51, 2221–2224 (2002) (in Chinese)Google Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • X. Zhou
    • 1
  • J. Luo
    • 1
  • X. Sun
    • 1
  • X. Zeng
    • 1
  • M. Zhan
    • 1
  • S. Ding
    • 1
  • M. Liu
    • 1
  1. 1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations