Applied Magnetic Resonance

, 26:601 | Cite as

Spatial distribution and formation of nitrate radical NO32− in Antarctic calcitic evaporates

  • H. Sato
  • A. Tani
  • A. J. Fielding
  • S. S. Eaton
  • G. R. Eaton
  • N. E. Whitehead
  • M. Ikeya
Article

Abstract

Nitrate radical NO32− in calcitic evaporate was discovered in Antarctica. The distribution and formation of nitrate radical NO32− in the calcite have been studied by pulse and continuous-wave electron spin resonance. In samples that had been annealed to destroy the NO32−, regeneration of the radical by γ-rays or UV light indicated that the radical was formed by UV light (with wavelengths less than 340 nm) from solar rays, not by environmental radiation. The nonuniform spatial distribution of the nitrate radical, which was deduced from high ratios of local spin density to total spin density, suggests that the nitrate impurity was introduced into the calcium carbonate after carbonate grain formation. Formation of the carbonate-containing nitrate requires the presence of high amounts of nitrate and a dry climate. Formation of the nitrate radical requires sample exposure to UV light. These conditions are satisfied in the environment of Antarctica.

References

  1. 1.
    DeCanniere P., Debuyst R., Dejehet F., Apers D.: Nucl. Tracks Radiat. Meas.14, 267–273 (1988)CrossRefGoogle Scholar
  2. 2.
    Chalk P.M., Keeney D.R.: Nature299, 42 (1971)CrossRefADSGoogle Scholar
  3. 3.
    Ikeya M.: New Applications of Electron Spin Resonance: Dating, Dosimetry and Microscopy. Singapore: World Scientific 1993.Google Scholar
  4. 4.
    The New Encyclopedia Britannica, 15th edn. vol. 1, pp. 947–967, London: Encyclopedia Britannica 1980.Google Scholar
  5. 5.
    Campbell I.B., Claridge G.C.: Antarctica: Soils, Weathering Processes and Environment. Amsterdam: Elsevier 1987.Google Scholar
  6. 6.
    Whitehead E., Lyon G.L., Claridge G.C., Sato H., Ikeya M.: Adv. ESR Appl.18, 11–18 (2002)Google Scholar
  7. 7.
    Sato H., Yamanaka C., Ikeya M.: Radiat. Meas.37, 335–339 (2003)CrossRefGoogle Scholar
  8. 8.
    Quine R.W., Eaton G.R., Eaton S.S.: Rev. Sci. Instrum.58, 1709–1724 (1987)CrossRefADSGoogle Scholar
  9. 9.
    Klauder J.R., Anderson P.W.: Phys. Rev. A138, 912–932 (1962)Google Scholar
  10. 10.
    Eaton S.S., Eaton G.R.: J. Magn. Reson. A,102, 354–356 (1993)CrossRefGoogle Scholar
  11. 11.
    Quine R.W., Eaton S.S., Eaton G.R.: Rev. Sci. Instrum.63, 4251–4262 (1992)CrossRefADSGoogle Scholar
  12. 12.
    Eachus R.S., Symons M.C.R.: J. Chem. Soc. A45, 790–793 (1968)CrossRefGoogle Scholar
  13. 13.
    Sato H.: Ph.D. thesis, Osaka University, Osaka, Japan, 2004.Google Scholar
  14. 14.
    Eaton S.S., Eaton G.R. in: Biological Magnetic Resonance (Berliner L.J., Eaton S.S., Eaton G.R., eds.), vol. 19, pp. 29–154. New York: Plenum 2000.Google Scholar
  15. 15.
    Bloch F.: Phys. Rev.70, 460–485 (1946)CrossRefADSGoogle Scholar
  16. 16.
    Bloembergen N., Purcell E.M., Pound R.V.: Phys. Rev.73, 679–712 (1948)CrossRefADSGoogle Scholar
  17. 17.
    Harbridge J.R., Eaton S.S., Eaton G.R.: J. Magn. Reson.164, 44–53 (2003)CrossRefADSGoogle Scholar
  18. 18.
    Lyons R.G., Brennan B.J.: Nucl. Tracks Radiat. Meas.18, 223–227 (1991)CrossRefGoogle Scholar
  19. 19.
    Griscom D.L.: J. Noncryst. Solids31, 241–266 (1978)CrossRefADSGoogle Scholar
  20. 20.
    Hirai M., Ikeya M.: Jpn. J. Appl. Phys.35, 4463–4467 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • H. Sato
    • 1
  • A. Tani
    • 1
  • A. J. Fielding
    • 2
  • S. S. Eaton
    • 2
  • G. R. Eaton
    • 2
  • N. E. Whitehead
    • 3
  • M. Ikeya
    • 1
  1. 1.Department of Earth and Space Sciences, Graduate School of SciencesOsaka UniversityToyonaka, OsakaJapan
  2. 2.Department of Chemistry and BiochemistryUniversity of DenverDenverUSA
  3. 3.Institute of Geological and Nuclear SciencesLower HuttNew Zealand

Personalised recommendations