Applied Magnetic Resonance

, 26:465 | Cite as

Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use

  • J. -L. DemangeatEmail author
  • P. Gries
  • B. Poitevin
  • J. -J. Droesbeke
  • T. Zahaf
  • F. Maton
  • C. Piérart
  • R. N. Muller


Low-field (0.02–4 MHz) proton nuclear magnetic resonance (NMR) longitudinal relaxometry was applied to ultrahighly diluted aqueous solutions in order to detect physical modifications induced in the solvent by the dilution process. A mixture of silica-lactose (1.67·10−5 M silica, 2.92·10−2 M lactose) was initially solubilized in water or in saline, then submitted to eighteen iterative centesimal dilutions in water or in saline under vigorous vortex agitation and rigorously controlled atmospheric conditions, and compared to similarly treated pure water and saline as controls. Several independent series of samples were measured according to a blind protocol (total of 140 code-labelled samples). A slight frequency dispersion (about 4%) was found within the 0.02–4 MHz range, centered around 0.55 MHz, and ascribed to combined effects of silica and trace paramagnetic contaminants, both concentrated and in a reduced motion at the borosilicate wall tube interface. The iterative dilution-agitation process in pure water and saline induced no significant effect on relaxivity. Slightly increased relaxivity compared to solvent was found in the initial silica-lactose dilution (especially in saline, about 4%), which vanished unexpectedly slowly upon dilution, as adjusted to an arbitrary log-linear model. Statistical analysis was applied to succeed in discriminating solutions from their solvents beyond the 10−12 level of dilution. No clear explanation emerged, but post-experiment chemical analysis revealed high amounts (6 ppm) of released silica from the glass material used, with excess in silicalactose samples, and lower amounts of trace paramagnetic contaminants in highly diluted silica-lactose samples, which could provide a clue.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Relaxation Linear Regression Function Dilution Range Nuclear Magnetic Relaxation Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Linde K., Jonas W.B., Melchart D., Worku F., Wagner H., Eitel F.: Hum. Exp. Toxicol.13, 481–492 (1994)CrossRefGoogle Scholar
  2. 2.
    Linde K., Clausius N., Ramirez G., Melchart D., Eitel F., Hedges L.V., Jonas W.B.: Lancet350, 834–843 (1997)CrossRefGoogle Scholar
  3. 3.
    Demangeat J.L., Demangeat C., Gries P., Poitevin B., Constantinesco A.: J. Med. Nucl. Biophys.16, 135–145 (1992)Google Scholar
  4. 4.
    Davenas E., Poitevin B., Benveniste B.: Eur. J. Pharmacol.135, 313–319 (1987)CrossRefGoogle Scholar
  5. 5.
    Koenig S.H., Brown III R.D. in: NMR Spectroscopy of the Cells and Organisms (Gupta R.K., ed.), vol. 2, pp. 75–114. Boca Raton, Fla.: CRC Press 1987.Google Scholar
  6. 6.
    Bloch B.W., Huang C.J.: Multivariate Statistical Methods for Business and Economics. Englewood Cliffs, N.J.: Prentice Hall 1974.Google Scholar
  7. 7.
    Iler R.K. in: The Chemistry of Silica (Iler R.K., ed.), chapt. 1, pp. 3–115. New York: Wiley 1979.Google Scholar
  8. 8.
    Graf V., Noak F., Béné G.J.: J. Chem. Phys.72, 861–863 (1980)CrossRefADSGoogle Scholar
  9. 9.
    Rommel E., Mischker K., Osswald G., Schweikert K.H., Noak F.: J. Magn. Reson.70, 219–234 (1986)Google Scholar
  10. 10.
    Hausser R., Noak F.: Z. Naturforsch.20, 1668–1675 (1965)ADSGoogle Scholar
  11. 11.
    Kiihne S., Bryant R.G.: Biophys. J.78, 2163–2169 (2000)CrossRefADSGoogle Scholar
  12. 12.
    Hausser R., Noak F.: Z. Phys.182, 93–110 (1964)CrossRefADSGoogle Scholar
  13. 13.
    Bertini I., Briganti F., Xia Z.C., Luchinat C.: J. Magn. Reson. A101, 198–201 (1993)CrossRefGoogle Scholar
  14. 14.
    Glasel J.A., Lee K.H.: J. Am. Chem. Soc.96, 970–978 (1974)CrossRefGoogle Scholar
  15. 15.
    Korb J.P., Whaley-Hodges M., Bryant R.G.: Phys. Rev. E56, 1934–1945 (1997)CrossRefADSGoogle Scholar
  16. 16.
    Korb J.P., Whaley-Hodges M., Gobron T., Bryant R.G.: Phys. Rev. E60, 3097–3106 (1999)CrossRefADSGoogle Scholar
  17. 17.
    Piculell L.: J. Chem. Soc. Faraday Trans. 182, 387–399 (1986)CrossRefGoogle Scholar
  18. 18.
    Halle B., Piculell L.: J. Chem. Soc. Faraday Trans. 182, 415–429 (1986)CrossRefGoogle Scholar
  19. 19.
    Gillis P., Borcard B.: J. Magn. Reson.77, 19–32 (1988)Google Scholar
  20. 20.
    Korb J.P., Delville A., Xu S., Jonas J.: Magn. Reson. Imag.12, 179–181 (1994)CrossRefGoogle Scholar
  21. 21.
    Hills B.P.: Magn. Reson. Imag.12, 183–190 (1994)CrossRefGoogle Scholar
  22. 22.
    Stapf S., Kimmich R.: J. Chem. Phys.103, 2247–2250 (1995)CrossRefADSGoogle Scholar
  23. 23.
    Halle B.: Mol. Phys.53, 1427–1461 (1984)CrossRefADSGoogle Scholar
  24. 24.
    Morariu V.V., Mills R., Wolff L.A.: Nature227, 373–374 (1970)CrossRefADSGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • J. -L. Demangeat
    • 1
    Email author
  • P. Gries
    • 1
  • B. Poitevin
    • 2
  • J. -J. Droesbeke
    • 3
  • T. Zahaf
    • 3
  • F. Maton
    • 4
  • C. Piérart
    • 4
  • R. N. Muller
    • 4
  1. 1.Nuclear Medicine DepartmentGeneral HospitalHaguenau CedexFrance
  2. 2.French Association for Research in HomeopathyVendatFrance
  3. 3.Laboratoire de Méthodologie du Traitement des DonnéesUniversité Libre de BruxellesBruxellesBelgium
  4. 4.Department of Organic Chemistry and NMR LaboratoryUniversity of Mons-HainautMonsBelgium

Personalised recommendations