Advertisement

Applied Magnetic Resonance

, 3:1021 | Cite as

EPR spectroscopic characterization of biological thiyl radicals as PBN spin-trap adducts

  • M. E. Mullins
  • J. S. Stamler
  • J. A. Osborne
  • J. Loscalzo
  • D. J. Singel
Article

Abstract

While the importance of thiols and their derivatives in biological processes is widely appreciated, the elucidation of the roles played by thiyl radicals in these processes — being hampered by the radical reactivity that makes their detection and characterization difficult — is lagging. The results of a spin-trap EPR study are reported which advance the capability for detecting and identifying thiyl radicals. Adducts with PBN (α-phenyl-N-t-butylnitrone) of thiyl radicals derived from the biologically abundant low-molecular-weight thiols cysteine, homocysteine, and glutathione are examined. Significant differences in the β-proton hyperfine couplings of the various adducts are observed; both the EPR lineshapes and the radical adduct lifetimes show trends reflective of the molecular size of the trapped thiyl radical. These results indicate that EPR spectroscopy can be useful in identifying specific thiyl radicals that may be involved in the biochemical reactions of low-molecular-weight thiols, protein thiols, and their derivatives.

Keywords

Adduct Thiol Nitroxide Hyperfine Coupling Radical Adduct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Jocelyn P.C.: Biochemistry of the Sulfhydryl Group. New York: Academic Press 1972.Google Scholar
  2. [2]
    Jocelyn P.C. in: Glutathione. Biochemistry Society Symposia (Crook E.M., ed.), vol. 17, pp. 43–65. New York: Academic Press 1959; Gaitonde M.K.: Biochem. J.104, 627–633 (1967)Google Scholar
  3. [3]
    Niroomand F., Possle R., Mulsch A., Bohme E.: Biochem. and Biophys. Res. Comm.161(1), 75–80 (1989); Stipanul M.H.: Ann. Rev. Nutr.6, 179–209 (1986); Greico A.L.: Am. J. Med. Sci.273(2), 120–132 (1977)CrossRefGoogle Scholar
  4. [4]
    Pascal I., Tarbell D.S.: J. Amer. Chem. Soc.79, 6015–6020 (1957); Schrauzer G.W., Sibert J.W.: Arch. Biochem. Biophys.130, 257–266 (1969); Thorn M.B., Jackson F.L.: Biochem. Biophys. Acta35, 65–76 (1959); Bigwood E.J., Thomas J.: C. R. Sceanc. Soc. Biol.120, 69–76 (1935); Keilin D.: Proc. R. Soc.106B, 418–444 (1930); Borsock H., Davenport H.W., Jeffreys C.E.P., Warner R.C.: J. Biol. Chem.117, 237–279 (1937); Michaelis L., Barron E.S.G.: J. Biol. Chem.81, 29–34 (1929); Rapkine L.: Ann. Physiol. Physico. Chim. Biol.9, 383–393 (1931).CrossRefGoogle Scholar
  5. [5]
    Schulz U., McCalla D.R.: Can. J. Chem.47, 2021–2027 (1969)CrossRefGoogle Scholar
  6. [6]
    Stamler J.S., Simon D., Osborne J., Mullins M., Jaraki O., Michel T., Singel D.J., Loscalzo J.: Proc. Natl. Acad. Sci.89, 444–448 (1992); Myers P.R., Miror Jr. R.L., Guerra Jr. R., Bates J.N., Harrison D.G.: Nature345, 161–163 (1990); Ignarro L.J.: Circ. Res.65, 1–21 (1989)CrossRefADSGoogle Scholar
  7. [7]
    Nelson D.J., Petersen R.L., Symons M.C.R.: J. C. S. Perkins II, 2005–2015 (1977)CrossRefGoogle Scholar
  8. [8]
    Janzen E.G. in: Free Radicals in Biology (Pryor W.A., ed.), vol. IV., pp. 115–154. New York: Academic Press 1980.Google Scholar
  9. [9]
    Perkins M.J.: Adv. Phys. Org. Chem.17, 16–64 (1980)Google Scholar
  10. [10]
    Buettner G.R.: Free Radical Biology & Medicine3, 259–303 (1987)CrossRefGoogle Scholar
  11. [11]
    Mottley C., Mason R.P. in: Biological Magnetic Resonance (Berliner, L.J., Reuben J., eds.), vol. 8, pp. 489–532, 1989.Google Scholar
  12. [12]
    Saez G., Thommalley P.J., Hill H.A.O., Hems R., Bannister J.V.: Bioch. Bioph. Acta719, 24–31 (1982)Google Scholar
  13. [13]
    Graceffa P.: Arch. Bioch. Biophys.225, 802–808 (1983)CrossRefGoogle Scholar
  14. [14]
    Felix C.C., Raszka K., Sealy R.C.: Photochm. Photobiol.37, 141–147 (1983); Buettner G.R.: Febs Lett.177, 295–299 (1984); Fischer V., Harielson Jr. W.G., Chignell C.F., Mason R.P.: Photobiophys.7, 111–119 (1984); Josephy P.D., Rehorek D., Janzen E.G.: Tet. Lett.25, 1685–1688 (1984); Ross D., Albano E., Nilsson U., Moldeus P.: Bioch. Biophys. Res. Comm.125, 109–115 (1984); Boyd J.A., Eling T.E.: Env. Hlth. Persp.64, 45–51 (1985); Eling T.E., Mason R.P., Sivarajah K.: J. Biol. Chem.260, 1601–1607 (1985); Ross D., Moldeus P.: Env. Hlth. Persp.64, 253–257 (1985); Ross D., Norbeck K., Moldeus P.: J. Biol. Chem.260, 15028–15032 (1985); Ross D., Cotgreave I.K., Moldeus P.: Bioch. Bioph. Acta841, 278–282 (1985); Buettner G.R., Moltten A.G., Itall R.D., Cingell C.F.: Photochem. Photobiol44, 5–10 (1986); Kennedy C.H., Pryor W.A., Winston G.W., Church D.F.: Bioch. Biophys. Res. Comm.141, 1123–1129 (1986); Stock B.H., Schreiber J., Guenat C., Mason R.P.: J. Biol. Chem.261, 15915–15922 (1986); Davies M.J., Forni L.G., Shuter S.L.: Chem.-Biol. Interact.61, 177–188 (1987)CrossRefGoogle Scholar
  15. [15]
    Harman L.S., Mottley C., Mason R.P.: J. Biol. Chem.259, 5606–5611 (1989)Google Scholar
  16. [16]
    Harman L.S., Carver D.K., Schreiber J., Mason R.P.: J. Biol. Chem.261, 1642–1648 (1986)Google Scholar
  17. [17]
    Eling T.E., Curtis J.F., Harman L.S., Mason R.P.: J. Biol. Chem.261, 5023–5028 (1986)Google Scholar
  18. [18]
    Mottley C., Toy K., Mason R.P.: Mol. Pharm.31, 417–421 (1987)Google Scholar
  19. [19]
    Mottley C., Mason R.P. in: Biological Magnetic Resonance (Berliner, L.J., Reuben J., eds.), vol. 8, p. 528, 1989.Google Scholar
  20. [20]
    This spectrum of this species appears, in isolation, at the end of each of the EPR time-series shown in Figs. 1–3; it is most clearly visible in Fig. 2, because of the contrary orientation of the time axis.Google Scholar
  21. [21]
    In experiments carried out in2H2O, the splitting pattern in the analogous spectrum (not depicted) is a triplet-of-triplets with splittings constants of approximately 15 G for the nitrogen and 2 G for the (solvent-derived) α-hydrogen.Google Scholar
  22. [22]
    Rehorek D., Janzen E.G.: Polyhedron3, 631–634 (1984)CrossRefGoogle Scholar
  23. [23]
    This effect is also evident in the analogous spectrum shown in Reference [13].CrossRefGoogle Scholar
  24. [24]
    Stone T.J., Buckman T., Nordio P.L., McConnell H.M.: Proc. Natl. Acad. Sci.54, 1010–1014 (1965)CrossRefADSGoogle Scholar
  25. [25]
    Li A.S.W., Cummings K.B., Roethling H.P., Buettner G.R., Chingell C.F.: J. Magn. Res.79, 140–142 (1988)Google Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • M. E. Mullins
    • 1
  • J. S. Stamler
    • 2
    • 3
  • J. A. Osborne
    • 2
    • 3
  • J. Loscalzo
    • 2
    • 3
  • D. J. Singel
    • 1
  1. 1.Department of ChemistryHarvard UniversityCambridgeUSA
  2. 2.Department of MedicineHarvard UniversityBostonUSA
  3. 3.Brigham and Women’s HospitalBostonUSA

Personalised recommendations