Journal of Physiology and Biochemistry

, Volume 65, Issue 1, pp 1–9 | Cite as

High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats

  • F. I. Milagro
  • J. Campión
  • D. F. García-Díaz
  • E. Goyenechea
  • L. Paternain
  • J. A. MartínezEmail author


Leptin is an adipokine involved in body weight and food intake regulation whose promoter region presents CpG islands that could be subject to dynamic methylation. This methylation process could be affected by environmental (e.g. diet) or endogenous (e.g., adipocyte differentiation, inflammation, hypoxia) factors, and could influence adipocyte leptin gene expression. The aim of this article was to study whether a high-energy diet may affect leptin gene promoter methylation in rats. A group of eleven male Wistar rats were assigned into two dietary groups, one fed on a control diet for 11 weeks and the other on a high-fat cafeteria diet. Rats fed a high-energy diet become overweight and hyperleptin emic as compared to the controls. DNA isolated from retroperitoneal adipocytes was treated with bisulfite and a distal portion of leptin promoter (from −694 to −372 bp) including 13 CpG sites was amplified by PCR and sequenced. The studied promoter portion was slightly more methylated in the cafeteria-fed animals, which was statistically significant (p<0.05) for one of the CpG sites (located at the position −443). In obese rats, such methy lation was associated to lower circulating leptin levels, suggesting that this position could be important in the regulation of leptin gene expression, probably by being a target sequence of different transcription factors. Our findings reveal, for the first time, that leptin methylation pattern can be influenced by diet-induced obesity, and suggest that epigenetic mechanisms could be involved in obesity by regulating the expression of important epiobesigenic genes.

Key words

Epigenetics DNA methylation Cafeteria diet Bisulfite Adipocyte differentiation Hypoxia 

La obesidad inducida por dieta alta en grasas modifica el patrón de metilación del promotor de la leptina en la rata


La leptina es una adipoquina implicada en la regulación del peso corporal y la ingesta energética cuya región promotora presenta islas CpG que podrían ser metiladas dinámicamente. Este proceso de metilación podría verse afectado por factores ambientales, como la dieta, o endógenos, como la diferenciación adipocitaria, inflamación o hipoxia, y podría influir en la expresión de leptina por parte de los adipocitos. El objetivo de este artículo es estudiar si una dieta alta en grasa podría afectar a la metilación del promotor de la leptina en ratas. Un grupo de once ratas Wistar macho fue dividido en dos subgrupos, uno alimentado con dieta control durante 11 semanas y el otro con dieta alta en grasa (dieta de cafetería). Las ratas alimentadas con la dieta rica en grasa presentaron sobrepeso e hiperleptinemia. El ADN aislado de los adipocitos retroperitoneales fue tratado con bisulfito y una porción distal del promotor de la leptina (de la base-694 a la — 372), conteniendo 13 sitios CpG, fue amplificada por PCR y secuenciada. Esta región del promotor apareció ligeramente más metilada en los animales alimentados con dieta de cafetería, lo cuál fue especialmente significativo (p <0,05) para uno de los sitios CpG (en la posición-443). En las ratas obesas, la metilación se asoció a una disminución de los niveles de leptina circulante, lo que sugiere que esta posición podría ser importante en la regulación de la expresión génica de esta adipoquina, probablemente por ser una secuencia diana de diferentes factores de trnascripción. Nuestos resultados, por primera vez, ponen de manifiesto que el patrón de metilación del promotor de la leptina puede estar influido por la obesidad inducida por la dieta, y sugieren que los mecanismos epigenéticos podrían estar implicados en la reciente pandemia de obesidad mediante la regulación de la expresión de importantes genes epiobesigénicos.

Palabras clave

Epigenética Metilación del ADN Dieta de cafeteria Adipocitos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beischlag, T.V., Luis Morales, J., Hollingshead, B.D. and Perdew, G.H. (2008): The aryl hydrocarbon receptor complex and the control of gene expression.Crit Rev Eukaryot Gene Expr,18, 207–250.PubMedGoogle Scholar
  2. 2.
    Campion, J., Milagro, F.I., Fernández, D. and Martínez, J.A. (2006): Diferential gene expression and adiposity reduction induced by ascorbic acid supplementation in a cafeterial model of obesity.J Physiol Biochem,62, 71–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Edwards, T. M. and Myers, J. P. (2007): Environmental exposures and gene regulation in disease etiology.Environ Health Perspect,115, 1264–1270.PubMedGoogle Scholar
  4. 4.
    Finnegan, E.J. (2001): Is plant gene expression regulated globally?Trends Genet,17, 361–365.PubMedCrossRefGoogle Scholar
  5. 5.
    Franco, R., Schoneveld, O., Georgakilas, A.G. and Panayiotidis, M.I. (2008): Oxidative stress, DNA methylation and carcinogenesis.Cancer Lett,266, 6–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Gallou-Kabani, C., Vige, A., Gross, M.S. and Junien, C. (2007): Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond.Clin Chem Lab Med,45, 321–327.PubMedCrossRefGoogle Scholar
  7. 7.
    García-Díaz, D.F., Campion, J., Milagro, F.I., Lomba, A., Marzo, F. and Martínez, J.A. (2007): Chronic mild stress induces variations in locomotive behavior and metabolic rates in high fat fed rats.J Physiol Biochem,63, 337–346.PubMedCrossRefGoogle Scholar
  8. 8.
    Grosfeld, A., Andre, J., Hauguel-De Mouzon, S., Berra, E., Pouyssegur, J. and Guerre-Millo, M. (2002): Hypoxia-inducible factor 1 transactivates the human leptin gene promoter.J Biol Chem,277, 42953–42957.PubMedCrossRefGoogle Scholar
  9. 9.
    Hernández-Morante, J.J., Milagro, F.I., Lujan, J.A., Martínez, J.A., Zamora, S. and Garaulet, M. (2008): Insulin effect on adipose tissue (AT) adiponectin expression is regulated by the insulin resistance status of the patients.Clin Endocrinol (Oxf),69, 412–417.CrossRefGoogle Scholar
  10. 10.
    Iguchi-Argia, S.M. and Schaffner, W. (1989): CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation.Genes Dev,3, 612–619.CrossRefGoogle Scholar
  11. 11.
    Johnson, I.T. and Belshaw, N.J. (2008): Environment, diet and CpG island methylation: epigenetic signals in gastrointestinal neoplasia.Food Chem Toxicol,46, 1346–1359.PubMedCrossRefGoogle Scholar
  12. 12.
    Junien, C. (2006): Impact of diets and nutrients/drugs on early epigenetic programming.J Inherit Metab Dis,29, 359–365.PubMedCrossRefGoogle Scholar
  13. 13.
    Junien, C and Nathanielsz, P. (2007): Report on the IASO Stock Conference 2006: early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes.Obes Rev,8, 487–502.PubMedCrossRefGoogle Scholar
  14. 14.
    Kotsopoulos, J., Sohn, K.J. and Kim, Y.I. (2008): Postweaning dietary folate deficiency provided through childhood to puberty permanently increases genomic DNA methylation in adult rat liver.J Nutr,138, 703–709.PubMedGoogle Scholar
  15. 15.
    Kumaki, Y., Oda, M. and Okano, M. (2008): QUMA: quantification tool for methylation analysis.Nucleic Acids Res,36, W170–175.PubMedCrossRefGoogle Scholar
  16. 16.
    Li, L.C. and Dahiya, R. (2002): Meth Primer: designing primers for methylation PCRs.Bioinformatics,18, 1427–1431.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu, L., Li, Y. and Tollefsbol, T.O. (2008): Geneenvironment interactions and epigenetic basis of human diseases.Curr Issues Mol Biol,10, 25–36.PubMedGoogle Scholar
  18. 18.
    Marti, A., Berraondo, B. and Martínez, J.A. (1999): Leptin: physiological actions.J Physiol Biochem,55, 43–49.PubMedGoogle Scholar
  19. 19.
    Melzner, I., Scott, V., Dorsch, K., Fischer, P., Wabitsch, M., Bruderlein, S., Hasel, C. and Moller, P. (2002): Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinet CpGs in its proximal promoter.J Biol Chem,277, 45420–45427.PubMedCrossRefGoogle Scholar
  20. 20.
    Milagro, F.I., Campion, J. and Martínez, J.A. (2007): 1-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.J Steroid Biochem Mol Biol,104, 81–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Rocha, S. (2007): Gene regulation under low oxygen: holding your breath for transcription.Trends Biochem Sci,32, 389–397.PubMedCrossRefGoogle Scholar
  22. 22.
    Semenza, G.L. and Wang, G.L. (1992): A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transciptional activation.Mol Cell Biol,12, 5447–5454.PubMedGoogle Scholar
  23. 23.
    Shahrazad, S., Bertrand, K., Minhas, K. and Coomber, B.L. (2007): Induction of DNA hypomethylation by tumor hypoxia.Epigenetics,2, 119–125.Google Scholar
  24. 24.
    Stancheva, I., El-Maarri, O., Walter, J., Niveleau, A. and Meehan, R.R. (2002): DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos.Dev Biol,243, 155–165.PubMedCrossRefGoogle Scholar
  25. 25.
    Stenvinkel, P., Karimi, M., Johansson, S., Axelsson, J., Suliman, M., Lindholm, B., Heimburger, O., Barany, P., Alvestrand, A., Nordfors, L., Qureshi, A.R., Ekstrom, T.J. and Schalling, M. (2007): Impact of inflammation on epigenetic DNA methylation — a novel risk factor for cardiovascular disease?J Intern Med,261, 488–499.PubMedCrossRefGoogle Scholar
  26. 26.
    Stoger, R. (2006): In vivo methylation patterns of the leptin promoter in human and mouse.Epigenetics,1, 155–162.PubMedCrossRefGoogle Scholar
  27. 27.
    Tang, W.Y. and Ho, S.M. (2007): Epigenetic reprogramming and imprinting in origins of disease.Rev Endocr Metab Disord,8, 173–182.PubMedCrossRefGoogle Scholar
  28. 28.
    Teodoridis, J.M., Strathdee, G. and Brown, R. (2004). Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker.Drug Resist Updat,7, 267–278.PubMedCrossRefGoogle Scholar
  29. 29.
    Trayhurn, P., Wang, B. and Wood, I.S. (2008): Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?Br J Nutr,100, 227–235.PubMedCrossRefGoogle Scholar
  30. 30.
    Vickers, M.H. (2007): Developmental programming and adult obesity: the role of leptin.Curr Opin Endocrinol Diabetes Obes,14, 17–22.PubMedGoogle Scholar
  31. 31.
    Vickers, M.H., Gluckman, P.D., Coveny, A.H., Hofman, P.L., Cutfield, W.S., Gertler, A., Breier, B.H. and Harris, M. (2008) The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy.Endocrinology,149, 1906–1913.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, B., Wood, I.S. and Trayhurn, P. (2007): Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes.Pflugers Arch,455, 479–492.PubMedCrossRefGoogle Scholar
  33. 33.
    Waterland, R. and Rached, M. (2006): Developmental establishment of epigenotype: a role for dietary fatty acids?Scand J Food Nutr,50, 21–26.CrossRefGoogle Scholar
  34. 34.
    Waterland, R.A. (2006): Assessing the effects of high methionine intake on DNA methylation.J Nutr,136, 1706S-1710S.PubMedGoogle Scholar
  35. 35.
    Wilson, A.G. (2008): Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases.J Periodontol,79, 1514–1519.PubMedCrossRefGoogle Scholar
  36. 36.
    Woods, S.L. and Whitelaw, M.L. (2002): Differential activities of murine single minded 1 (SIM1) and SIM2 on a hypoxic response element. Crosstalk between basic helix-loop-helix/per-Arnt-Sim homology transcription factors.J Biol Chem,277, 10236–10243.PubMedCrossRefGoogle Scholar
  37. 37.
    Xing, Y, Shi, S., Le, L., Lee, C.A., Silver-Morse, L. and Li, W.X. (2007): Evidence for transgenerational transmission of epigenetic tumor susceptibility in Drosophila.PLoS Genet,3, 1598–606.PubMedCrossRefGoogle Scholar
  38. 38.
    Yokomori, N., Tawata, M. and Onaya, T. (2002): DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells.Siabetalogia 45, 140–148.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J.M. (1994): Positional cloning of the mouse obese gene and its human homologue.Nature,372, 425–432.PubMedCrossRefGoogle Scholar

Copyright information

© Universidad de Navarra 2009

Authors and Affiliations

  • F. I. Milagro
    • 1
  • J. Campión
    • 1
  • D. F. García-Díaz
    • 1
  • E. Goyenechea
    • 1
  • L. Paternain
    • 1
  • J. A. Martínez
    • 1
    Email author
  1. 1.Department of Nutrition and Food Sciences, Physiology and ToxicologyUniversity of NavarraSpain

Personalised recommendations