International Journal of Hematology

, Volume 76, Supplement 2, pp 193–203 | Cite as

Clinical and scientific advances in the philadelphia-chromosome negative chronic myeloproliferative disorders

  • Ruben A. Mesa
Chronic Leukemia

Abstract

The chronic myeloproliferative disorders are clonal hematopoietic stem cell disorders and include chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and agnogenic myeloid metaplasia (AMM). These diseases are characterized by clonal expansion of the myeloid compartment, increased marrow angiogenesis, and varying risks for blastic transformation. A clear molecular abnormality exists (t(9;22) leading to the fusion of BCR-Abl) only for CML, which led to effective targeted therapy (STI-571). Since no similar pathogenetic mechanism has been discovered for the t(9;22) negative chronic myeloproliferative disorders, their respective diagnosis is currently based on a variety of rather cumbersome diagnostic criteria. Polycythemia vera is distinguished from reactive erythrocytosis through erythropoietin independent growth of erythroid progenitorsin vitro, suppressed levels of endogenous erythropoietin, possible overexpression of PRV-1 (polycythemia rubra vera-1), decreased c-Mpl expression on megakaryocytes, as well as overexpression of bcl-xL, and potentially aberrant activity of the Jak-Stat pathway. ET is defined by thrombocytosis and is distinguished from reactive states by decreased megakaryocyte c-Mpl expression, and a propensity for thrombosis. AMM has been associated with a variety of observations including increased concentrations of pro-fibrotic cytokines, increased angiogenesis, and myeloid expansion. AMM is often indistinguishable clinically and prognostically from the advanced phases of other CMPD (specifically post-polycythemic and post-thrombocythemia myeloid metaplasia), all of which are subentities of a diagnosis of myelofibrosis with myeloid metaplasia (MMM). The management of CMPD patients is quite varied given the broad range of disease severity and survival observed. The role of stem cell transplantation is limited by the age and comorbidities encountered in CMPD patients. Since no broadly applicable therapy effects the mortality of the CMPD, management currently focuses on the prevention/palliation of disease morbidity (i.e. vascular complications, pruritus, organomegaly, constitutional symptoms). Palliative strategies which currently focus on non-specific myelosuppresion, will hopefully be soon replaced by targeted therapies as insight into pathogenetic mechanisms of these diseases evolves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tefferi A. The Philadelphia chromosome negative chronic myeloproliferative disorders: a practical overview.Mayo Clinic Proceedings. 1998;73:1177–1184.PubMedCrossRefGoogle Scholar
  2. 2.
    Tefferi A, Mesa RA, Nagorney DM, Schroeder G, Silverstein MN. Splenectomy in myelofibrosis with myeloid metaplasia: a single-institution experience with 223 patients.Blood. 2000;95:2226–2233.PubMedGoogle Scholar
  3. 3.
    Landolfi R. Bleeding and thrombosis in myeloproliferative disorders.Current Opinion in Hematology. 1998;5:327–331.PubMedCrossRefGoogle Scholar
  4. 4.
    van Genderen PJ, Michiels JJ. Erythromelalgia. a pathognomonic microvascular thrombotic complication in essential thrombocythemia and polycythemia vera.Seminars in Thrombosis & Hemostasis. 1997;23:357–363.CrossRefGoogle Scholar
  5. 5.
    Tefferi A, Jimenez T, Gray LA, Mesa RA, Chen MG. Radiation therapy for symptomatic hepatomegaly in myelofibrosis with myeloid metaplasia.Eur J Haematol. 2001;66:37–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Dingli D, Utz JP, Krowka MJ, Oberg AL, Tefferi A. Unexplained pulmonary hypertension in chronic myeloproliferative disorders.Chest. 2001;120:801–808.PubMedCrossRefGoogle Scholar
  7. 7.
    Michiels JJ. Diagnostic criteria of the myeloproliferative disorders (MPD): essential thrombocythaemia, polycythaemia vera and chronic megakaryocytic granulocytic metaplasia.Netherlands Journal of Medicine. 1997;51:57–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.N Engl J Med. 2001;344:1031–1037.PubMedCrossRefGoogle Scholar
  9. 9.
    Tefferi A. Myelofibrosis with myeloid metaplasia.New England Journal of Medicine. 2000;342:1255–1265.PubMedCrossRefGoogle Scholar
  10. 10.
    Ania BJ, Suman VJ, Sobell JL, Codd MB, Silverstein MN, Melton LJ, 3rd. Trends in the incidence of polycythemia vera among Olmsted County, Minnesota residents, 1935–1989.Am J Hematol. 1994;47:89–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Berlin NI. Prologue: polycythemia vera. The closing of the Wasserman-Polycythemia Vera Study Group era.Seminars in Hematology. 1997;34:1–5.PubMedGoogle Scholar
  12. 12.
    Cotes PM, Dore CJ, Yin JA, et al. Determination of serum immunoreactive erythropoietin in the investigation of erythrocytosis.N Engl J Med. 1986;315:283–287.PubMedGoogle Scholar
  13. 13.
    Kutti J, Wadenvik H. Diagnostic and differential criteria of essential thrombocythemia and reactive thrombocytosis.Leukemia & Lymphoma. 1996;22:41–45.CrossRefGoogle Scholar
  14. 14.
    Michiels JJ, Juvonen E. Proposal for revised diagnostic criteria of essential thrombocythemia and polycythemia vera by the Thrombocythemia Vera Study Group.Seminars in Thrombosis & Hemostasis. 1997;23:339–347.CrossRefGoogle Scholar
  15. 15.
    Jantunen R, Juvonen E, Ikkala E, et al. Essential thrombocythemia at diagnosis: causes of diagnostic evaluation and presence of positive diagnostic findings.Ann Hematol. 1998;77:101–106.PubMedCrossRefGoogle Scholar
  16. 16.
    Osselaer JC, Jamart J, Scheiff JM. Platelet distribution width for differential diagnosis of thrombocytosis.Clinical Chemistry. 1997;43:1072–1076.PubMedGoogle Scholar
  17. 17.
    Buss D, O’Connor M, Woodruff R, Richards F, Brockschmidt J. Bone marrow and peripheral blood findings in patients with extreme thrombocytosis: a report of 63 cases.Arch Pathol LAb Med. 1991;115:475–480.PubMedGoogle Scholar
  18. 18.
    Tefferi A, Ho TC, Ahmann GJ, Katzmann JA, Greipp PR. Plasma interleukin-6 and C-reactive protein levels in reactive versus clonal thrombocytosis [see comments].American Journal of Medicine. 1994;97:374–378.PubMedCrossRefGoogle Scholar
  19. 19.
    Mesa RA, Silverstein MN, Jacobsen SJ, Wollan PC, Tefferi A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County Study, 1976–1995.Am J Hematol. 1999;61:10–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Tefferi A, Mesa R, Schroeder G, Hanson C, Li C-Y, Dewald G. Cytogenetic findings and their clinical relevance in myelofibrosis ith myeloid metaplasia. InPreparation. 2000.Google Scholar
  21. 21.
    Lutton J, Levere R. Endogenous erythroid colony formation by peripheral blood mononuclear cells from patients with myelofibrosis and polycythemia vera.Acta Haematol. 1979;62:94–99.PubMedCrossRefGoogle Scholar
  22. 22.
    Partanen S, Ruutu T, Vuopio P. Circulating haematopoietic progenitors in myelofibrosis.Scandinavian, Journal of Haematology. 1982;29:325–330.Google Scholar
  23. 23.
    Dobo I, Mossuz P, Campos L, et al. Comparison of Four Serum-Free, Cytokine Free Media for Analysis of Endogenous Erythroid Clony (EEC) Growth in Polycythemia Vera (PV) and Essential Thrombocythemia.Blood. 2001;98:4852a.Google Scholar
  24. 24.
    Shih LY, Lee CT, See LC, et al. In vitro culture growth of erythroid progenitors and serum erythropoietin assay in the differential diagnosis of polycythaemia.European Journal of Clinical Investigation. 1998;28:569–576.PubMedCrossRefGoogle Scholar
  25. 25.
    Battegay EJ, Thomssen C, Nissen C, Gudat F, Speck B. Endogenous megakaryocyte colonies from peripheral blood in precursor cell cultures of patients with myeloproliferative disorders.European Journal of Haematology. 1989;42:321–326.PubMedGoogle Scholar
  26. 26.
    Rolovic Z, Basara N, Gotic M, Sefer D, Bogdanovic A. The determination of spontaneous megakaryocyte colony formation is an unequivocal test for discrimination between essential thrombocythaemia and reactive thrombocytosis.British Journal of Haematology. 1995;90:326–331.PubMedCrossRefGoogle Scholar
  27. 27.
    Juvonen E, Ikkala E, Oksanen K, Ruutu T. Megakaryocyte and erythroid colony formation in essential thrombocythaemia and reactive thrombocytosis: diagnostic value and correlation to complications.British Journal of Haematology. 1993;83:192–197.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaushansky K. Thrombopoietin: the primary regulator of platelet production.Blood. 1995;86:419–431.PubMedGoogle Scholar
  29. 29.
    Moliterno A, Hankins W, Spivak J. Imaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera.New England Journal of Medicine. 1998;338:572–580.PubMedCrossRefGoogle Scholar
  30. 30.
    Moliterno AR, Spivak JL. Posttranslational processing of the thrombopoietin receptor is impaired in polycythemia vera.Blood. 1999;94:2555–2561.PubMedGoogle Scholar
  31. 31.
    Tefferi A, Yoon SY, Li CY. Immunohistochemical staining for megakaryocyte c-mpl may complement morphologic distinction between polycythemia vera and secondary erythrocytosis.Blood. 2000;96:771–772.PubMedGoogle Scholar
  32. 32.
    Moliterno AR, Williams DM, Spivak JL. Enhanced in vitro viability of polycythemia vera CD34+ CElls is associated with abnormal thrombopoietin receptor expression and aberrant signal transduction.Blood. 2001;98:a1961.Google Scholar
  33. 33.
    Horikawa Y, Matsumura I, Hashimoto K, et al. Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia.Blood. 1997;90:4031–4038.PubMedGoogle Scholar
  34. 34.
    Mesa RA, Hanson CA, Li CY, et al. Diagnostic and prognostic value of bone marrow angiogenesis and megakaryocyte c-Mpl expression in essential thrombocythemia.Blood. 2002; 99:4131–4137.PubMedCrossRefGoogle Scholar
  35. 35.
    Taksin AL, Couedic JPL, Dusanter-Fourt I, et al. Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L.Blood. 1999;93:125–139.PubMedGoogle Scholar
  36. 36.
    Tomita N, Motomura S, Sakai R, et al. Strong inverse correlation between serum TPO level and platelet count in essential thrombocythemia.American Journal of Hematology. 2000;63:131–135.PubMedCrossRefGoogle Scholar
  37. 37.
    Cerutti A, Custodi P, Mduranti, Cazzola M, Balduini CL. Circulating thrombopoietin in reactive conditions behaves like an acute phase reactant.Clinical & Laboratory Haematology. 1999;21:271–275.CrossRefGoogle Scholar
  38. 38.
    Hsu HC, Tsai WH, Jiang ML, et al. Circulating levels of thrombopoietic and inflammatory cytokines in patients with clonal and reactive thrombocytosis.Journal of Laboratory & Clinical Medicine. 1999;134:392–397.CrossRefGoogle Scholar
  39. 39.
    Yoon SY, Li CY, Tefferi A. Megakaryocyte c-Mpl expression in chronic myeloproliferative disorders and the myelodysplastic syndrome: immunoperoxidase staining patterns and clinical correlates.Eur J Haematol. 2000;65:170–174.PubMedCrossRefGoogle Scholar
  40. 40.
    Folkman J. Angiogenesis inhibitors generated by tumors.Molecular Medicine. 1995;1:120–122.PubMedGoogle Scholar
  41. 41.
    Vacca A, Ribatti D, Roncali et al. Bone marrow angiogenesis and progression in multiple myeloma.British Journal of Haematology. 1994;87:503–508.PubMedCrossRefGoogle Scholar
  42. 42.
    Kini AR, Kay NE, Peterson LC. Increased bone marrow angiogenesis in B cell chronic lymphocytic leukemia.Leukemia. 2000;14:1414–1418.PubMedCrossRefGoogle Scholar
  43. 43.
    Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia.Am J Pathol. 1997;150:815–821.PubMedGoogle Scholar
  44. 44.
    Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia.Blood. 2000;95:309–313.PubMedGoogle Scholar
  45. 45.
    Aguayo A, Kantarjian H, Manshouri T, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes.Blood. 2000;96:2240–2245.PubMedGoogle Scholar
  46. 46.
    Rajkumar SV, Leong T, Roche PC, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma [In Process Citation].Clin Cancer Res. 2000;6:3111–3116.PubMedGoogle Scholar
  47. 47.
    Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma [see comments] [published erratum appears in N Engl J Med 2000 Feb 3;342(5):364].N Engl J Med. 1999;341:1565–1571.PubMedCrossRefGoogle Scholar
  48. 48.
    Mesa RA, Hanson CA, Rajkumar SV, Schroeder G, Tefferi A. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia.Blood. 2000;96:3374–3380.PubMedGoogle Scholar
  49. 49.
    Di Raimondo F, Palumbo GA, Molica S, Giustolisi R. Angiogenesis in chronic myeloproliferative diseases.Acta Haematol. 2001;106:177–183.PubMedCrossRefGoogle Scholar
  50. 50.
    Elliott MA, Mesa RA, Li CY. Thalidomide treatment in myelofibrosis with myeloid metaplasia.Br J Haematol. 2002;117:288–296.PubMedCrossRefGoogle Scholar
  51. 51.
    Stopeck A, Karp JE, Silverman L, et al. Results of a phase II study of SU5416 in the treatment of patients with myeloproliferative disorders: evidence for in vivo target inhibition.Blood. 2001;98:2646a.Google Scholar
  52. 52.
    Tefferi A, Baek J-Y, Diehn FE, Hoyer JD, Wellik LE, Mesa RA. Bone Marrow Angiogenesis (BMA) and Vascular Endothelial Growth Factor (VEGF) Immunohistochemistry in Myelofibrosis with Myeloid Metaplasia (MMM).Blood. 2001;98:2622a.Google Scholar
  53. 53.
    Harrison CN, Gale RE, Machin SJ, Linch DC. A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications [see comments].Blood. 1999;93:417–424.PubMedGoogle Scholar
  54. 54.
    Temerinac S, Klippel S, Strunck E, et al. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera.Blood. 2000;95:2569–2576.PubMedGoogle Scholar
  55. 55.
    Bettinotti MP, Olsen A, Stroncek D. The use of bioinformatics to identify the genomic structure of the gene that encodes neutrophil antigen NB1, CD177.Clin Immunol. 2002; 102:138–144.PubMedCrossRefGoogle Scholar
  56. 56.
    Klippel S, Strunck E, Temerinac S, et al. Quantification of PRV-1 expression, a molecular marker for the diagnosis of polycythemia vera.Blood. 2001;98:a1965.Google Scholar
  57. 57.
    Tefferi A, Diehn FE, Baek J, Mesa RA, Hoyer JD. Clinical and bone marrow histological correlates of peripheral blood CD34 count in myelofibrosis with myeloid metaplasia (MMM).Blood. 2001;98:a2625.Google Scholar
  58. 58.
    Barosi G, Viarengo G, Pecci A, Diagnostic and clinical relevance of the number of circulating CD34(+) cells in myelofibrosis with myeloid metaplasia.Blood. 2001;98:3249–3255.PubMedCrossRefGoogle Scholar
  59. 59.
    Dupriez B, Morel P, Demory JL, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system [see comments].Blood. 1996;88:1013–1018.PubMedGoogle Scholar
  60. 60.
    Thiele J, Kvasnicka HM, Zankovich R, Diehl V. The value of bone marrow histology in differentiating between early stage Polycythemia vera and secondary (reactive) Polycythemias.Haematologica. 2001;86:368–374.PubMedGoogle Scholar
  61. 61.
    Thiele J, Kvasnicka HM. [Chronic myeloproliferative disorders. The new WHO classification].Pathologe. 2001;22:429–443.PubMedCrossRefGoogle Scholar
  62. 62.
    Tefferi A, Mesa RA, Schroeder G, Hanson CA, Li CY, Dewald GW. Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia.Br J Haematol. 2001; 113:763–771.PubMedCrossRefGoogle Scholar
  63. 63.
    Rege-Cambrin G, Mecucci C, Tricot G, et al. A chromosomal profile of polycythemia vera.Cancer Genetics & Cytogenetics. 1987;25:233–245.CrossRefGoogle Scholar
  64. 64.
    Swolin B, Safai-Kutti S, Anghem E, Kutti J. No increased frequency of trisomies 8 and 9 by fluorescence in situ hybridization in untreated patients with essential thrombocythemia.Cancer Genet Cytogenet. 2001;126:56–59.PubMedCrossRefGoogle Scholar
  65. 65.
    Prchal JF, Axelrad AA. Letter: Bone-marrow responses in polycythemia vera.N Engl J Med. 1974;290:1382.PubMedGoogle Scholar
  66. 66.
    Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera [see comments].New England Journal of Medicine. 1998;338:564–571.PubMedCrossRefGoogle Scholar
  67. 67.
    Muta K, Krantz SB. Apoptosis of human erythroid colonyforming cells is decreased by stem cell factor and insulin-like growth factor I as well as erythropoietin.J Cell Physiol. 1993;156:264–271.PubMedCrossRefGoogle Scholar
  68. 68.
    Dai CH, Krantz SB, Sawyer ST, Polycythemia vera, V. Enhanced proliferation and phosphorylation due to vanadate are diminished in polycythemia vera erythroid progenitor cells: a possible defect of phosphatase activity in polycythemia vera.Blood. 1997;89:3574–3581.PubMedGoogle Scholar
  69. 69.
    Sui X, Krantz SB, Zhao Z. Identification of increased protein tyrosine phosphatase activity in polycythemia vera erythroid progenitor cells.Blood. 1997;90:651–657.PubMedGoogle Scholar
  70. 70.
    Hess G, Rose P, Gamm H, Papadileris S, Huber C, Seliger B. Molecular analysis of the erythropoietin receptor system in patients with polycythaemia vera.Br J Haematol. 1994;88:794–802.PubMedCrossRefGoogle Scholar
  71. 71.
    Roder S, Steimle C, Meinhardt G, Pahl HL. STAT3 is constitutively active in some patients with Polycythemia rubra vera.Exp Hematol. 2001;29:694–702.PubMedCrossRefGoogle Scholar
  72. 72.
    Griffin JD. Point mutations in the FLT3 gene in AML.Blood. 2001;97:2193A-2193.PubMedCrossRefGoogle Scholar
  73. 73.
    Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials.Blood. 2001;98:1752–1759.PubMedCrossRefGoogle Scholar
  74. 74.
    Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model.Blood. 2002;99:310–318.PubMedCrossRefGoogle Scholar
  75. 75.
    Jones LC, Tefferi A, Wachsman W, Hofmann WK, Koeffler HP. Detection of Aberrant Signaling Pathways in CD34+ Cells from Patients with Myelofibrosis with Myeloid Metaplasia Using Oligonulceotide Microarrays.Blood. 2001;98:a2620.Google Scholar
  76. 76.
    Murphy S. Therapeutic dilemmas: balancing the risks of bleeding, thrombosis, and leukemic transformation in myeloproliferative disorders (MPD) [Review] [46 refs].Thrombosis & Haemostasis. 1997;78:622–626.Google Scholar
  77. 77.
    Cortelazzo S, Finazzi G, Ruggeri M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis.N Engl J Med. 1995;332:1132–1136.PubMedCrossRefGoogle Scholar
  78. 78.
    Afshar-Kharghan V, Lopez J, Gray L, et al. Hemostatic Gene Polymorphisms and the Prevalence of Thrombohemorrhagic Complications in Polycythemia Vera and Essential Thrombocythemia.Blood. 2001;98:a1967.Google Scholar
  79. 79.
    Presseizen K, Friedman Z, Shapiro H, Radnay J, Ellis MH. Phosphatidylserine expression on the platelet membrane of patients with myeloproliferative disorders and its effect on platelet-dependent thrombin formation.Clin Appl Thromb Hemost. 2002;8:33–39.PubMedCrossRefGoogle Scholar
  80. 80.
    Neunteufl T, Heher S, Stefenelli T, Pabinger I, Gisslinger H. Endothelial dysfunction in patients with polycythaemia vera.Br J Haematol. 2001;115:354–359.PubMedCrossRefGoogle Scholar
  81. 81.
    Cervantes F. Prognostic factors and current practice in treatment of myelofibrosis with myeloid metaplasia: an update anno 2000.Pathol Biol (Paris). 2001;49:148–152.Google Scholar
  82. 82.
    Najean Y, Deschamps A, Dresch C, Daniel MT, Rain JD, Arrago JP. Acute leukemia and myelodysplasia in polycythemia vera. A clinical study with long-term follow-up.Cancer. 1988;61:89–95.PubMedCrossRefGoogle Scholar
  83. 83.
    Sedlacek SM, Curtis JL, Weintraub J, Levin J. Essential thrombocythemia and leukemic transformation.Medicine. 1986; 65:353–364.PubMedCrossRefGoogle Scholar
  84. 84.
    Berlin NI. Treatment of the myeloproliferative disorders with 32P.Eur J Haematol. 2000;65:1–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Tefferi A. Current management of polycythemia vera.Leuk Lymphoma. 2002;43:1–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Tefferi A. Recent progress in the pathogenesis and management of essential thrombocythemia.Leuk Res. 2001;25:369–377.PubMedCrossRefGoogle Scholar
  87. 87.
    Gilbert HS. Diagnosis and treatment of thrombocythemia in myeloproliferative disorders.Oncology (Huntingt). 2001;15:989–996, 998; discussion 999–1000, 1006, 1008.Google Scholar
  88. 88.
    Spivak JL. The optimal management of polycythaemia vera.Br J Haematol. 2002;116:243–254.PubMedCrossRefGoogle Scholar
  89. 89.
    Guardiola P, Esperou H, Cazalshatem D, et al. Allogeneic bone marrow transplantation for agnogenic myeloid metaplasia.British Journal of Haematology. 1997;98:1004–1009.PubMedCrossRefGoogle Scholar
  90. 90.
    Guardiola P, Anderson JE, Bandini G, et al. Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a european group for blood and marrow transplantation, societe francaise de greffe de moelle, gruppo italiano per il trapianto del midollo osseo, and fred hutchinson cancer research Center collaborative study.Blood. 1999;93:2831–2838.PubMedGoogle Scholar
  91. 91.
    Devine SM, Hoffman R, Verma A, et al. Allogeneic blood cell transplantation following reduced-intensity conditioning is effective therapy for older patients with myelofibrosis with myeloid metaplasia.Blood. 2002;99:2255–2258.PubMedCrossRefGoogle Scholar
  92. 92.
    Anderson JE, Tefferi A, Craig F, et al. Myeloablation and autologous peripheral blood stem cell rescue results in hematologic and clinical responses in patients with myeloid metaplasia with myelofibrosis.Blood. 2001;98:586–593.PubMedCrossRefGoogle Scholar
  93. 93.
    Jurado M, Deeg H, Gooley T, et al. Haemopoietic stem cell transplantation for advanced polycythaemia vera or essential thrombocythaemia.Br J Haematol. 2001;112:392–396.PubMedCrossRefGoogle Scholar
  94. 94.
    Silver RT. Interferon alfa: effects of long-term treatment for polycythemia vera.Semin Hematol. 1997;34:40–50.PubMedGoogle Scholar
  95. 95.
    Elliott MA, Tefferi A. Interferon-alpha therapy in polycythemia vera and essential thrombocythemia.Seminars in Thrombosis & Hemostasis. 1997;23:463–472.CrossRefGoogle Scholar
  96. 96.
    Quesada JR, Talpaz M, Rios A, Kurzrock R, Gutterman JU. Clinical toxicity of interferons in cancer patients: a review.J Clin Oncol. 1986;4:234–243.PubMedGoogle Scholar
  97. 97.
    Petitt RM, Silverstein MN, Petrone ME. Anagrelide for control of thrombocythemia in polycythemia and other myeloproliferative disorders.Seminars in Hematology. 1997;34:51–54.PubMedGoogle Scholar
  98. 98.
    Giles FJ, Cortes J, Garcia-Manero G, et al. Phase II study of pegylated intron in patients with essential thrombocythemia (ET).Blood. 2001;98:a2636.Google Scholar
  99. 99.
    Gugliotta L, Russo D, Vianelli N, et al. PEG interferon Alpha 2b (PEG-INTRON) in essential thrombocythemia: Phase II study for the determination of the minimum effective, Safe, and tolerated dose.Blood. 2001;98:a2635.Google Scholar
  100. 100.
    Tefferi A, Elliot MA, Yoon SY, Li CY, Mesa RA, Call TG, Dispenzieri A. Clinical and bone marrow effects of interferon alfa therapy in myelofibrosis with myeloid metaplasia.Blood. 2001;97:1896.PubMedCrossRefGoogle Scholar
  101. 101.
    Seewann HL, Gastl G, Lang A, Abbrederis K, Thaler J, Flener R, Huber C. Interferon-alpha-2 in the treatment of idiopathic myelofibrosis.Blut. 1988;56:161–163.PubMedCrossRefGoogle Scholar
  102. 102.
    Parmeggiani L, Ferrant A, Rodhain J, Michaux JL, Sokal G. Alpha interferon in the treatment of symptomatic myelofibrosis with myeloid metaplasia.European Journal of Haematology. 1987;39:228–232.PubMedCrossRefGoogle Scholar
  103. 103.
    Micouin A, Steunou V, Wietzerbin J, Martyre MC. Lack of interferon-alpha-induced tyrosine phosphorylation of Vav proto-oncogene in patients with myelofibrosis with myeloid metaplasia.Br J Haematol. 2000;110:362–369.PubMedCrossRefGoogle Scholar
  104. 104.
    Micouin A, Wietzerbin J, Steunou V, Martyre MC. p95(vav) associates with the type I interferon (IFN) receptor and contributes to the antiproliferative effect of IFN-alpha in megakaryocytic cell lines.Oncogene. 2000;19:387–394.PubMedCrossRefGoogle Scholar
  105. 105.
    Gilbert HS. Long term treatment of myeloproliferative disease with interferon-alpha-2b: feasibility and efficacy.Cancer. 1998;83:1205–1213.PubMedCrossRefGoogle Scholar
  106. 106.
    Diehn F, Tefferi A. Pruritus in polycythaemia vera: prevalence, laboratory correlates and management.Br J Haematol. 2001;115:619–621.PubMedCrossRefGoogle Scholar
  107. 107.
    Tefferi A, Fonseca R. Selective serotonin reuptake inhibitors are effective in the treatment of polycythemia vera-associated pruritus.Blood. 2002;99:2627.PubMedCrossRefGoogle Scholar
  108. 108.
    Mesa RA, Tefferi A, Gray L, Schroeder G, Kaufmann SH. The farnesyltransferase inhibitor, R115777, has significant in vitro activity in myelofibrosis with myeloid metaplasia.Blood. 2001;98:a1963.CrossRefGoogle Scholar
  109. 109.
    Barosi G, Grossi A, Comotti B, Musto P, Gamba G, Marchetti M. Safety and efficacy of thalidomide in patients with myelofibrosis with myeloid metaplasia.Br J Haematol. 2001;114:78–83.PubMedCrossRefGoogle Scholar
  110. 110.
    Canepa L, Ballerini F, Varaldo R, et al. Thalidomide in agnogenic and secondary myelofibrosis.Br J Haematol. 2001;115:313–315.PubMedCrossRefGoogle Scholar
  111. 111.
    Pozzato G, Zorat F, Nascimben F, Comar C, Kikic F, Festini G. Thalidomide therapy in compensated and decompensated myelofibrosis with myeloid metaplasia.Haematologica. 2001; 86:772–773.PubMedGoogle Scholar
  112. 112.
    Elliott MA, Mesa RA, Li C-Y, et al. Thalidomide Treatment in Myelofibrosis with Myeloid Metaplasia.British Journal of Haematology (in press). 2002.Google Scholar
  113. 113.
    Mesa RA, Tefferi A, Elliott MA, et al. A phase II trial of pirfenidone (5-methyl-1-phenyl-2).Br J Haematol. 2001;114: 111–113.PubMedCrossRefGoogle Scholar
  114. 114.
    Steensma DP, Mesa RA, Li CY, Gray L, Tefferi A. Etanercept, a soluble tumor necrosis factor receptor, palliates constitutional symptoms in patients with myelofibrosis with myeloid metaplasia: results of a pilot study.Blood. 2002;99:2252–2254.PubMedCrossRefGoogle Scholar
  115. 115.
    Tefferi A, Mesa RA, Gray LA, et al. Phase 2 trial of imatinib mesylate in myelofibrosis with myeloid metaplasia.Blood. 2002;99:3854–3856.PubMedCrossRefGoogle Scholar
  116. 116.
    Petti MC, Latagliata R, Spadea T, et al. Melphalan treatment in patients with myelofibrosis with myeloid metaplasia.Br J Haematol. 2002;116:576–581.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2002

Authors and Affiliations

  • Ruben A. Mesa
    • 1
  1. 1.Division of HematologyMayo ClinicRochesterUSA

Personalised recommendations